o
    d                     @   st   d Z dddZdddZdd Zd	d
 Zdd Zdd Zdd ZdddZdddZ	dddZ
dddZdd ZdS )zE
Built-in datasets for demonstration, educational and test purposes.
FNc                 C   s   t d}|r||d |k }| r|d td d|d< |s)|jddgdd}|r?|jtd	d
ddddddddd
ddd |S )a  
    Each row represents a country on a given year.

    https://www.gapminder.org/data/

    Returns:
        A `pandas.DataFrame` with 1704 rows and the following columns:
        `['country', 'continent', 'year', 'lifeExp', 'pop', 'gdpPercap',
        'iso_alpha', 'iso_num']`.
        If `datetimes` is True, the 'year' column will be a datetime column
        If `centroids` is True, two new columns are added: ['centroid_lat', 'centroid_lon']
        If `year` is an integer, the dataset will be filtered for that year
    	gapminderyearz-01-01datetime64[ns]centroid_latcentroid_lon   )axisCountry	ContinentYearzLife ExpectancyzGDP per Capita
PopulationzISO Alpha Country CodezISO Numeric Country CodezCentroid LatitudezCentroid Longitude)
country	continentr   lifeExp	gdpPercappop	iso_alphaiso_numr   r   columnsTmapperr   inplace)_get_datasetastypestrdroprenamedict)	datetimes	centroidsr   pretty_namesdf r!   Y/var/www/html/visualizacion-main/env/lib/python3.10/site-packages/plotly/data/__init__.pyr      s2   r   c              
   C   s2   t d}| r|jtdddddddd	d
dd |S )a  
    Each row represents a restaurant bill.

    https://vincentarelbundock.github.io/Rdatasets/doc/reshape2/tips.html

    Returns:
        A `pandas.DataFrame` with 244 rows and the following columns:
        `['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size']`.tipsz
Total BillTipzPayer GenderzSmokers at TablezDay of WeekMealz
Party Size)
total_billtipsexsmokerdaytimesizer   Tr   )r   r   r   )r   r    r!   r!   r"   r#   /   s    
	r#   c                   C      t dS )a  
    Each row represents a flower.

    https://en.wikipedia.org/wiki/Iris_flower_data_set

    Returns:
        A `pandas.DataFrame` with 150 rows and the following columns:
        `['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species', 'species_id']`.irisr   r!   r!   r!   r"   r.   K   s   	r.   c                   C   r-   )z
    Each row represents a level of wind intensity in a cardinal direction, and its frequency.

    Returns:
        A `pandas.DataFrame` with 128 rows and the following columns:
        `['direction', 'strength', 'frequency']`.windr/   r!   r!   r!   r"   r0   W   s   r0   c                   C   r-   )a"  
    Each row represents voting results for an electoral district in the 2013 Montreal
    mayoral election.

    Returns:
        A `pandas.DataFrame` with 58 rows and the following columns:
        `['district', 'Coderre', 'Bergeron', 'Joly', 'total', 'winner', 'result', 'district_id']`.electionr/   r!   r!   r!   r"   r1   a      r1   c                  C   s   ddl } ddl}ddl}|j|j|jtddd}| |d}||	 
d}W d   |S 1 s9w   Y  |S )a0  
    Each feature represents an electoral district in the 2013 Montreal mayoral election.

    Returns:
        A GeoJSON-formatted `dict` with 58 polygon or multi-polygon features whose `id`
        is an electoral district numerical ID and whose `district` property is the ID and
        district name.    Npackage_datadatasetszelection.geojson.gzrzutf-8)gzipjsonospathjoindirname__file__GzipFileloadsreaddecode)r7   r8   r9   r:   fresultr!   r!   r"   election_geojsonl   s   
rD   c                   C   r-   )a!  
    Each row represents the availability of car-sharing services near the centroid of a zone
    in Montreal over a month-long period.

    Returns:
        A `pandas.DataFrame` with 249 rows and the following columns:
        `['centroid_lat', 'centroid_lon', 'car_hours', 'peak_hour']`.carsharer/   r!   r!   r!   r"   rE      r2   rE   c                 C   s8   t d}|r|d d|d< | r|d}d|j_|S )a  
    Each row in this wide dataset represents closing prices from 6 tech stocks in 2018/2019.

    Returns:
        A `pandas.DataFrame` with 100 rows and the following columns:
        `['date', 'GOOG', 'AAPL', 'AMZN', 'FB', 'NFLX', 'MSFT']`.
        If `indexed` is True, the 'date' column is used as the index and the column index
        If `datetimes` is True, the 'date' column will be a datetime column
        is named 'company'stocksdater   company)r   r   	set_indexr   name)indexedr   r    r!   r!   r"   rF      s   

rF   c                 C   s   t d}| r
d|j_|S )a  
    Each row in this wide dataset represents the results of 100 simulated participants
    on three hypothetical experiments, along with their gender and control/treatment group.


    Returns:
        A `pandas.DataFrame` with 100 rows and the following columns:
        `['experiment_1', 'experiment_2', 'experiment_3', 'gender', 'group']`.
        If `indexed` is True, the data frame index is named "participant" 
experimentparticipant)r   indexrJ   rK   r    r!   r!   r"   rL      s   
rL   c                 C   s"   t d}| r|d}d|j_|S )au  
    This dataset represents the medal table for Olympic Short Track Speed Skating for the
    top three nations as of 2020.

    Returns:
        A `pandas.DataFrame` with 3 rows and the following columns:
        `['nation', 'gold', 'silver', 'bronze']`.
        If `indexed` is True, the 'nation' column is used as the index and the column index
        is named 'medal'medalsnationmedal)r   rI   r   rJ   rO   r!   r!   r"   medals_wide   s
   

rS   c                 C   s(   t djdgddd}| r|d}|S )a>  
    This dataset represents the medal table for Olympic Short Track Speed Skating for the
    top three nations as of 2020.

    Returns:
        A `pandas.DataFrame` with 9 rows and the following columns:
        `['nation', 'medal', 'count']`.
        If `indexed` is True, the 'nation' column is used as the index.rP   rQ   countrR   )id_vars
value_namevar_name)r   meltrI   rO   r!   r!   r"   medals_long   s   	
rY   c              	   C   s<   dd l }dd l}||j|j|jtdd| d S )Nr3   r4   r5   z.csv.gz)pandasr9   read_csvr:   r;   r<   r=   )drZ   r9   r!   r!   r"   r      s   r   )FFNF)F)FF)__doc__r   r#   r.   r0   r1   rD   rE   rF   rL   rS   rY   r   r!   r!   r!   r"   <module>   s    

)




