## Characteristic subgroups are

 not preserved by isomorphisms of tables of marksVíctor Nozarir García-Ríos, Alberto Gerardo Raggi-Cárdenas and Luis Valero-Elizondo

29 May 2009

We construct two non-isomorphic groups $G$ and $Q$ of order 96 which have isomorphic tables of marks, but such that the centre of $G$ is mapped to a non-characteristic subgroup of $Q$.

Let $G, Q$ be finite groups. Let $\mathfrak{C}(G)$ be the family of all conjugacy classes of subgroups of $G$. We usually assume that the elements of $\mathfrak{C}(G)$ are ordered non-decreasingly. The matrix whose $H, K$-entry is $\#\left(K^{H}\right)$ is called the table of marks of $G$ (where $H, K$ run through all the elements in $\mathfrak{C}(G))$.

The Burnside ring of $G$, denoted $B(G)$, is the subring of $\mathbb{Z}^{\mathfrak{C}}(G)$ spanned by the columns of the table of marks of $G$. It is easy to see that if $G$ and $Q$ have isomorphic tables of marks, then they have isomorphic Burnside rings; the converse is an open problem.

Definition 1. Let $\psi$ be a function from $\mathfrak{C}(G)$ to $\mathfrak{C}(Q)$. Given a subgroup $H$ of $G$, we denote by $H^{\prime}$ any representative of $\psi([H])$. We say that $\psi$ is an isomorphism between the tables of marks of $G$ and $Q$ if $\psi$ is a bijection and if $\#\left(K^{\prime H^{\prime}}\right)=\#\left(K^{H}\right)$ for all subgroups $H, K$ of G.

Two non-isomorphic groups of order 96 with isomorphic tables of marks

Let $S_{3}$ be the symmetric group or order 6 . Let $C_{8}$ be the cyclic group of order 8, generated by $x$, and let $C_{2}$ be the cyclic group of order 2 , generated by $y$.

Let $\delta$ be the only non-trivial homomorphism from $S_{3}$ to $C_{8}$. Let $W$ denote the group $S_{3} \times$ $C_{8}$. Let $\alpha$ be the automorphism of $W$ given by $\alpha\left(\lambda, x^{i}\right)=\left(\lambda, x^{i} \delta(\lambda)\right)$, and let $\beta$ be the automorphism of $W$ given by $\beta\left(\lambda, x^{i}\right)=\left(\lambda, x^{5 i} \delta(\lambda)\right)$.

Since $\alpha$ has order two, we can define the group $G$ as the semidirect product of $W$ with $C_{2}$ by $\alpha$, that is, in $G$ we have that $y\left(\lambda, x^{i}\right) y=\alpha\left(\lambda, x^{i}\right)$. Similarly, we define the group $Q$ as the semidirect product of $W$ and $C_{2}$ by $\beta$; in $Q$ we have that $y\left(\lambda, x^{i}\right) y=\beta\left(\lambda, x^{i}\right)$. We shall denote the elements of both $G$ and $Q$ as $\lambda x^{i} y^{j}$.

Note that in $G, x$ and $y$ commute, and the centre of $G$ is therefore the subgroup generated by $x$, which is a subgroup of order 8; however, $x$ and $y$ do not commute in $Q$, and the centre of $Q$ is the subgroup generated by $x^{2}$, which is a subgroup of order 4. In particular, we also have that $G$ and $Q$ are non-isomorphic groups of order 96.

Theorem 2. Let $S$ be a subset of $G$ (and therefore $S$ is also a subset of $Q$ ). Then $S$ is a subgroup of $G$ if and only if $S$ is a subgroup of $Q$. Moreover, two subgroups are conjugate in $G$ if and only if they are conjugate in $Q$, and the identity map on the family of conjugacy classes of subgroups defines and isomorphism between the tables of marks of $G$ and $Q$.

Proof: See Two non-isomorphic groups of order 96 with isomorphic tables of marks and non-corresponding centres and abelian subgroups, Communications in Algebra, 2009.

Theorem 3. The subgroup of $Q$ generated by $x$ is not a characteristic subgroup. In particular, the isomorphism of tables of marks between $G$ and $Q$ maps the centre of $G$ to a non-characteristic subgroup of $Q$.

Proof: We construct an automorphism of $Q$ that does not preserve the subgroup generated by $x$. Let $\eta: Q \longrightarrow Q$ be given by
$\eta\left(\lambda x^{i} y^{j}\right)=\lambda x^{3 i+6 i^{2}+(1-\operatorname{Sgn}(\lambda))(2 i+3)} y^{i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}}$

We claim that for a generator $g$ of $Q$ and an arbitrary $\lambda x^{i} y^{j}$ we have that $\eta\left(g \lambda x^{i} y^{j}\right)=$ $\eta(g) \eta\left(\lambda x^{i} y^{j}\right)$, where $g$ can be $(1,2),(1,2,3), x, y$, so $\eta$ is indeed a homomorphism.

$$
g=(1,2)
$$

$$
\begin{aligned}
& \eta\left((1,2)\left(\lambda x^{i} y^{j}\right)\right)=\eta\left((1,2) \lambda x^{i} y^{j}\right) \\
& =(1,2) \lambda x^{5 i+6 i^{2}-2 i \operatorname{Sgn}((1,2) \lambda)-3 \operatorname{sgn}((1,2) \lambda)+3} \\
& y^{i+j+\frac{1-\operatorname{Sgn}((1,2) \lambda)}{2}} \\
& =(1,2) \lambda x^{5 i+6 i^{2}+2 i \operatorname{Sgn}(\lambda)+3 \operatorname{sgn}(\lambda)+3} y^{i+j+\frac{1+\operatorname{Sgn}(\lambda)}{2}}
\end{aligned}
$$

On the other hand:

$$
\begin{aligned}
& \eta((1,2)) \eta\left(\lambda x^{i} y^{j}\right) \\
& =\left((1,2) x^{6} y\right)\left(\lambda x^{5 i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-3 \operatorname{Sgn}(\lambda)+3}\right. \\
& \left.y^{i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}}\right) \\
& =(1,2) \lambda \\
& x^{6+5\left[5 i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-3 \operatorname{Sgn}(\lambda)+3\right]+2(1-\operatorname{Sgn}(\lambda))} \\
& y^{1+i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}} \\
& =(1,2) \lambda x^{i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-\operatorname{Sgn}(\lambda)+7} y^{1+i+j \frac{1-\operatorname{Sgn}(\lambda)}{2}}
\end{aligned}
$$

These two expressions coincide, because:

$$
\begin{aligned}
& (5 i+2 i \operatorname{Sgn}(\lambda)+3 \operatorname{sgn}(\lambda)+3)- \\
& (i-2 i \operatorname{Sgn}(\lambda)-\operatorname{Sgn}(\lambda)+7) \\
& =4 i+4 i \operatorname{sgn}(\lambda)+4 \operatorname{sgn}(\lambda)+4 \\
& =4((1+\operatorname{Sgn}(\lambda))(i+1))
\end{aligned}
$$

$$
\begin{aligned}
& g=(1,2,3): \\
& \eta\left((1,2,3)\left(\lambda x^{i} y^{j}\right)\right)=\eta\left((1,2,3) \lambda x^{i} y^{j}\right) \\
& =(1,2,3) \lambda x^{5 i+6 i^{2}-2 i \operatorname{Sgn}((1,2,3) \lambda)-3 \operatorname{Sgn}((1,2,3) \lambda)+3} \\
& y^{i+j+\frac{1-\operatorname{Sgn}((1,2,3) \lambda)}{2}} \\
& =(1,2,3) \lambda x^{5 i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-3 \operatorname{sgn}(\lambda)+3} y^{i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}}
\end{aligned}
$$

On the other hand:

$$
\begin{aligned}
& \eta((1,2,3)) \eta\left(\lambda x^{i} y^{j}\right) \\
& =((1,2,3))\left(\lambda x^{5 i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-3 \operatorname{Sgn}(\lambda)+3}\right. \\
& \left.y^{i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}}\right) \\
& =(1,2,3) \lambda x^{5 i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-3 \operatorname{Sgn}(\lambda)+3} \\
& y^{1+i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& g=y: \\
& \eta\left(y \lambda x^{i} y^{j}\right)=\eta\left(\lambda x^{5 i+2-2 \operatorname{Sgn}(\lambda)} y^{1+j}\right) \\
& =\lambda x^{5[5 i+2-2 \operatorname{Sgn}(\lambda)]+6[5 i+2-2 \operatorname{Sgn}(\lambda)]^{2}-} \\
& 2[5 i+2-2 \operatorname{Sgn}(\lambda)] \operatorname{Sgn}(\lambda)-3 \operatorname{Sgn}(\lambda)+3 y^{1+i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}} \\
& =\lambda x^{i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-\operatorname{Sgn}(\lambda)+1} y^{1+i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}}
\end{aligned}
$$

On the other hand:

$$
\begin{aligned}
& \eta(y) \eta\left(\lambda x^{i} y^{j}\right)=y\left(\lambda x^{5 i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-3 \operatorname{Sgn}(\lambda)+3}\right. \\
& \left.y^{i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}}\right) \\
& =\lambda x^{5\left[5 i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-3 \operatorname{Sgn}(\lambda)+3\right]+2[1-\operatorname{Sgn}(\lambda)]} \\
& y^{1+i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}} \\
& =\lambda x^{i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-\operatorname{Sgn}(\lambda)+1} y^{1+i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}}
\end{aligned}
$$

$$
g=x
$$

$$
\begin{aligned}
& \eta\left(x \lambda x^{i} y^{j}\right)=\eta\left(\lambda x^{1+i} y^{j}\right) \\
& =\lambda x^{5(1+i)+6(1+i)^{2}-2(1+i) \operatorname{Sgn}(\lambda)-3 \operatorname{Sgn}(\lambda)+3} \\
& y^{1+i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}} \\
& =\lambda x^{i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-5 \operatorname{Sgn}(\lambda)+6} y^{1+i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}}
\end{aligned}
$$

On the other hand:

$$
\begin{aligned}
& \eta(x) \eta\left(\lambda x^{i} y^{j}\right)=(x y)\left(\lambda x^{5 i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-3 \operatorname{Sgn}(\lambda)+3}\right. \\
& \left.y^{i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}}\right) \\
& =\lambda x^{1+5\left[5 i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-3 \operatorname{Sgn}(\lambda)+3\right]+2(1-\operatorname{Sgn}(\lambda))} \\
& y^{1+i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}} \\
& =\lambda x^{2+i+6 i^{2}-2 i \operatorname{Sgn}(\lambda)-\operatorname{Sgn}(\lambda)} y^{1+i+j+\frac{1-\operatorname{Sgn}(\lambda)}{2}}
\end{aligned}
$$

These two expressions coincide because:

$$
(6-5 \operatorname{Sgn}(\lambda))-(2-\operatorname{Sgn}(\lambda))=4(1-\operatorname{Sgn}(\lambda))
$$

Therefore $\eta$ is a group homomorphism.

Moreover,

$$
\begin{array}{cl}
(1,2)=\eta\left((1,2) x^{6} y\right), & (1,2,3)=\eta(1,2,3), \\
x=\eta(x y), & y=\eta(y)
\end{array}
$$

so $\eta$ must be an automorphism. Finally, note that $\eta(x)=x y$, so the subgroup generated by $x$ is not a characteristic subgroup of $Q$.

