Minimal groups with isomorphic tables of marks

Margarita Martinez-Lopez, Gerardo Raggi-Cárdenas, Eder Vieyra-Sanchez and Luis Valero-Elizondo

May 2013

Western Carolina University

Available online at: www.fismat.umich.mx/~valero

Isomorphism of tables of marks

Definition

Let G, Q be finite groups. Let $\mathbb{C}(G)$ be the family of all conjugacy classes of subgroups of G. We usually assume that the elements of $\mathfrak{C}(G)$ are ordered non-decreasingly.

Isomorphism of tables of marks

Definition

Let G, Q be finite groups. Let $\mathfrak{C}(G)$ be the family of all conjugacy classes of subgroups of G. We usually assume that the elements of $\mathfrak{C}(G)$ are ordered non-decreasingly. Let ψ be a function from $\mathfrak{C}(G)$ to $\mathfrak{C}(Q)$. Given a subgroup H of G, we denote by H^{\prime} any representative of $\psi([H])$.

Isomorphism of tables of marks

Definition

Let G, Q be finite groups. Let $\mathfrak{C}(G)$ be the family of all conjugacy classes of subgroups of G. We usually assume that the elements of $\mathfrak{C}(G)$ are ordered non-decreasingly.

Isomorphism of tables of marks

Definition

Let G, Q be finite groups. Let $\mathfrak{C}(G)$ be the family of all conjugacy classes of subgroups of G. We usually assume that the elements of $\mathfrak{C}(G)$ are ordered non-decreasingly. Let ψ be a function from $\mathfrak{C}(G)$ to $\mathfrak{C}(Q)$. Given a subgroup H of G, we denote by H^{\prime} any representative of $\psi([H])$.

Isomorphism of tables of marks

Definition

Let G, Q be finite groups. Let $\mathfrak{C}(G)$ be the family of all conjugacy classes of subgroups of G. We usually assume that the elements of $\mathfrak{C}(G)$ are ordered non-decreasingly. Let ψ be a function from $\mathfrak{C}(G)$ to $\mathfrak{C}(Q)$. Given a subgroup H of G, we denote by H^{\prime} any representative of $\psi([H])$. We say that ψ is an isomorphism between the tables of marks of G and Q if ψ is a bijection and if $\#\left(\left(Q / K^{\prime}\right)^{H^{\prime}}\right)=\#\left((G / K)^{H}\right)$ for all subgroups H, K of G.

Table of marks

The square matrix whose H, K-entry is $\#\left((G / K)^{H}\right)$ is called the table of marks of G (where H, K run through all the elements in $\mathfrak{C}(G))$. transpose of the previous matrix (for instance, that is how GAP defines it).

Table of marks

The square matrix whose H, K-entry is $\#\left((G / K)^{H}\right)$ is called the table of marks of G (where H, K run through all the elements in $\mathfrak{C}(G)$). Some authors define the table of marks of G as the transpose of the previous matrix (for instance, that is how GAP defines it).
of $\mathbb{C}(G)$, so that the groups G and Q have isomorphic tables of
marks if and only if it is possible to rearrange the elements of $\mathfrak{C}(G)$
and/or $\mathfrak{C}(Q)$ so that G and Q have identical tables of marks.

Table of marks

The square matrix whose H, K-entry is $\#\left((G / K)^{H}\right)$ is called the table of marks of G (where H, K run through all the elements in $\mathfrak{C}(G))$. Some authors define the table of marks of G as the transpose of the previous matrix (for instance, that is how GAP defines it). This matrix is defined up to an ordering of the elements of $\mathfrak{C}(G)$, so that the groups G and Q have isomorphic tables of marks if and only if it is possible to rearrange the elements of $\mathfrak{C}(G)$ and/or $\mathfrak{C}(Q)$ so that G and Q have identical tables of marks.

Burnside ring

The Burnside ring of G, denoted $B(G)$, is the subring of $\mathbb{Z} \mathfrak{C}(G)$ spanned by the columns of the table of marks of G.

It is easy to see that if G and Q have isomorphic tables of marks, then they have isomorphic Burnside rings; the converse is an open problem

Burnside ring

The Burnside ring of G, denoted $B(G)$, is the subring of $\mathbb{Z} \mathfrak{C}(G)$ spanned by the columns of the table of marks of G.

It is easy to see that if G and Q have isomorphic tables of marks, then they have isomorphic Burnside rings; the converse is an open problem.

Preserved attributes

An isomorphism between the tables of marks of two groups preserves many properties of the parent group and its subgroups. Here we list a few of these properties.

> Theorem
> let $G \cap$ be finite groups with isomorphic tables of marks. H denote subgroups of G, and let K^{\prime}, H^{\prime} denote representatives in their respective conjugacy classes of subgroups under the isomorphism between their tables of marks. Then we have that:

Preserved attributes

An isomorphism between the tables of marks of two groups preserves many properties of the parent group and its subgroups. Here we list a few of these properties.

Theorem

Let G, Q be finite groups with isomorphic tables of marks. Let K, H denote subgroups of G, and let K^{\prime}, H^{\prime} denote representatives in their respective conjugacy classes of subgroups under the isomorphism between their tables of marks. Then we have that:

Preserved attributes

An isomorphism between the tables of marks of two groups preserves many properties of the parent group and its subgroups. Here we list a few of these properties.

Theorem

Let G, Q be finite groups with isomorphic tables of marks. Let K, H denote subgroups of G, and let K^{\prime}, H^{\prime} denote representatives in their respective conjugacy classes of subgroups under the isomorphism between their tables of marks. Then we have that:

- $G^{\prime}=Q$,

Preserved attributes

An isomorphism between the tables of marks of two groups preserves many properties of the parent group and its subgroups. Here we list a few of these properties.

Theorem

Let G, Q be finite groups with isomorphic tables of marks. Let K, H denote subgroups of G, and let K^{\prime}, H^{\prime} denote representatives in their respective conjugacy classes of subgroups under the isomorphism between their tables of marks. Then we have that:

$$
\text { - } G^{\prime}=Q,\left(1_{G}\right)^{\prime}=1_{Q}
$$

Preserved attributes

An isomorphism between the tables of marks of two groups preserves many properties of the parent group and its subgroups. Here we list a few of these properties.

Theorem

Let G, Q be finite groups with isomorphic tables of marks. Let K, H denote subgroups of G, and let K^{\prime}, H^{\prime} denote representatives in their respective conjugacy classes of subgroups under the isomorphism between their tables of marks. Then we have that:

$$
G^{\prime}=Q,\left(1_{G}\right)^{\prime}=1_{Q},|G|=\left|G^{\prime}\right|
$$

Preserved attributes

An isomorphism between the tables of marks of two groups preserves many properties of the parent group and its subgroups. Here we list a few of these properties.

Theorem

Let G, Q be finite groups with isomorphic tables of marks. Let K, H denote subgroups of G, and let K^{\prime}, H^{\prime} denote representatives in their respective conjugacy classes of subgroups under the isomorphism between their tables of marks. Then we have that:

- $G^{\prime}=Q,\left(1_{G}\right)^{\prime}=1_{Q},|G|=\left|G^{\prime}\right|,|H|=\left|H^{\prime}\right|$,

Preserved attributes

An isomorphism between the tables of marks of two groups preserves many properties of the parent group and its subgroups. Here we list a few of these properties.

Theorem

Let G, Q be finite groups with isomorphic tables of marks. Let K, H denote subgroups of G, and let K^{\prime}, H^{\prime} denote representatives in their respective conjugacy classes of subgroups under the isomorphism between their tables of marks. Then we have that:

$$
\begin{aligned}
& \text { - } G^{\prime}=Q,\left(1_{G}\right)^{\prime}=1_{Q},|G|=\left|G^{\prime}\right|,|H|=\left|H^{\prime}\right|, \alpha(H, K)= \\
& \quad \alpha\left(H^{\prime}, K^{\prime}\right), \beta(H, K)=\beta\left(H^{\prime}, K^{\prime}\right),
\end{aligned}
$$

Preserved attributes

An isomorphism between the tables of marks of two groups preserves many properties of the parent group and its subgroups. Here we list a few of these properties.

Theorem

Let G, Q be finite groups with isomorphic tables of marks. Let K, H denote subgroups of G, and let K^{\prime}, H^{\prime} denote representatives in their respective conjugacy classes of subgroups under the isomorphism between their tables of marks. Then we have that:

$$
\begin{aligned}
& \text { - } G^{\prime}=Q,\left(1_{G}\right)^{\prime}=1_{Q},|G|=\left|G^{\prime}\right|,|H|=\left|H^{\prime}\right|, \alpha(H, K)= \\
& \alpha\left(H^{\prime}, K^{\prime}\right), \beta(H, K)=\beta\left(H^{\prime}, K^{\prime}\right),\left|N_{G}(H)\right|=\left|N_{Q}\left(H^{\prime}\right)\right| .
\end{aligned}
$$

Preserved attributes

An isomorphism between the tables of marks of two groups preserves many properties of the parent group and its subgroups. Here we list a few of these properties.

Theorem

Let G, Q be finite groups with isomorphic tables of marks. Let K, H denote subgroups of G, and let K^{\prime}, H^{\prime} denote representatives in their respective conjugacy classes of subgroups under the isomorphism between their tables of marks. Then we have that:

$$
\begin{aligned}
& G^{\prime}=Q,\left(1_{G}\right)^{\prime}=1_{Q},|G|=\left|G^{\prime}\right|,|H|=\left|H^{\prime}\right|, \alpha(H, K)= \\
& \alpha\left(H^{\prime}, K^{\prime}\right), \beta(H, K)=\beta\left(H^{\prime}, K^{\prime}\right),\left|N_{G}(H)\right|=\left|N_{Q}\left(H^{\prime}\right)\right| .
\end{aligned}
$$

Preserved attributes II

- The subgroup H is normal in G if and only if H^{\prime} is normal in Q. In this case, G / H and Q / H^{\prime} have isomorphic tables of marks.

- If $K \leq H$ and at least one of these two subgroups is normal in G, then $K^{\prime} \leq H^{\prime}$ for any choice of K^{\prime} and H^{\prime}.

Preserved attributes II

- The subgroup H is normal in G if and only if H^{\prime} is normal in Q. In this case, G / H and Q / H^{\prime} have isomorphic tables of marks.
- If $K \leq H$ and at least one of these two subgroups is normal in G, then $K^{\prime} \leq H^{\prime}$ for any choice of K^{\prime} and H^{\prime}.
- If K and H are normal subgroups of G, then $(K \cap H)^{\prime}=K^{\prime} \cap H^{\prime}$ and $(K H)^{\prime}=K^{\prime} H^{\prime}$
isomorphic tables of marks, and H and H^{\prime} have isomorphic tables of marks.

Preserved attributes II

- If K and H are normal subgroups of G, then $(K \cap H)^{\prime}=K^{\prime} \cap H^{\prime}$ and $(K H)^{\prime}=K^{\prime} H^{\prime}$.
- If $G=K \times H$, then $Q=K^{\prime} \times H^{\prime}, K$ and K^{\prime} have
isomorphic tables of marks, and H and H^{\prime} have isomorphic tables of marks.

Preserved attributes II

- If $K \leq H$ and at least one of these two subgroups is normal
- If K and H are normal subgroups of G, then $(K \cap H)^{\prime}=K^{\prime} \cap H^{\prime}$ and $(K H)^{\prime}=K^{\prime} H^{\prime}$.
- If $G=K \times H$, then $Q=K^{\prime} \times H^{\prime}, K$ and K^{\prime} have isomorphic tables of marks, and H and H^{\prime} have isomorphic tables of marks.

Preserved attributes II

- If K and H are normal subgroups of G, then
- If $G=K \times H$, then $Q=K^{\prime} \times H^{\prime}, K$ and K^{\prime} have isomorphic tables of marks, and H and H^{\prime} have isomorphic tables of marks.
- If G is a p-group, then $\operatorname{socle}(Z(G))^{\prime}=\operatorname{socle}(Z(Q))$.

Preserved attributes III

- The subgroup H is maximal in G if and only if H^{\prime} is maximal in Q.
- The Frattini subgroups correspond, that is, $\Phi(G)^{\prime}=\Phi(Q)$. The group G is nilpotent if and only if Q is nilpotent. However, there are non-isomorphic p-groups with isomorphic tables of marks.

Preserved attributes III

- The subgroup H is maximal in G if and only if H^{\prime} is maximal
- The Frattini subgroups correspond, that is, $\Phi(G)^{\prime}=\Phi(Q)$.
- The group G is nilpotent if and only if Q is nilpotent. However, there are non-isomorphic p-groups with isomorphic tables of marks.

For any divisor d of the order of H, the number of subgroups of H of order d is preserved; in particular, the total number of subgroups of H is preserved

Preserved attributes III

- The subgroup H is maximal in G if and only if H^{\prime} is maximal
- The Frattini subgroups correspond, that is, $\Phi(G)^{\prime}=\Phi(Q)$
- The group G is nilpotent if and only if Q is nilpotent. However, there are non-isomorphic p-groups with isomorphic tables of marks.
- For any divisor d of the order of H, the number of subgroups of H of order d is preserved; in particular, the total number of subgroups of H is preserved. - The subgroup H is cyclic if and only if H^{\prime} is cyclic.

Preserved attributes III

- The Frattini subgroups correspond, that is, $\Phi(G)^{\prime}=\Phi(Q)$
- The groun G is nilnotent if and only if Q is nilnotent However, there are non-isomorphic p-groups with isomorphic tables of marks.
- For any divisor d of the order of H, the number of subgroups of H of order d is preserved; in particular, the total number of subgroups of H is preserved.
- The subgroup H is cyclic if and only if H^{\prime} is cyclic.

Preserved attributes III

> - The group G is nilpotent if and only if Q is nilpotent. However, there are non-isomorphic p-groups with isomor hic tables of marks.
> - For any divisor d of the order of H, the number of subgroups of H of order d is preserved; in particular, the total number of subgroups of H is preserved.

- The subgroup H is cyclic if and only if H^{\prime} is cyclic.

Preserved attributes IV

- If H is isomorphic to the quaternion group of order 8 , then H^{\prime} is isomorphic to H.
- If G is abelian then $G \cong Q$.

The commutator subgroups correspond, that is,
isomorphic, that is, $G /[G, G] \cong Q /[Q, Q]$

Preserved attributes IV

- If H is isomorphic to the quaternion group of order 8 , then H^{\prime} is isomorphic to H
- If G is abelian then $G \cong Q$.
- The commutator subgroups correspond, that is, $[G, G]^{\prime}=[Q, Q]$. Moreover, the abelianized groups are isomorphic, that is, $G /[G, G] \cong Q /[Q, Q]$ If G is isomorphic to S_{n} for some $n \geq 5$, then Q is isomorphic

Preserved attributes IV

- If H is isomorphic to the quaternion group of order 8 , then H^{\prime}
is isomornhic to H
- If G is abelian then $G \cong Q$.
- The commutator subgroups correspond, that is, $[G, G]^{\prime}=[Q, Q]$. Moreover, the abelianized groups are isomorphic, that is, $G /[G, G] \cong Q /[Q, Q]$.
- If G is isomorphic to S_{n} for some $n \geq 5$, then Q is isomorphic to G. - The subgroup II is an elementary abelian p-group if and only if H^{\prime} is an elementary abelian p-group.

Preserved attributes IV

- If G is abelian then $G \cong Q$.
- The commutator subgrouns correspond, that is, $[G, G]^{\prime}=[Q, Q]$. Moreover, the abelianized groups are isomorphic, that is, $G /[G, G] \cong Q /[Q, Q]$
- If G is isomorphic to S_{n} for some $n \geq 5$, then Q is isomorphic to G.
- The subgroup H is an elementary abelian p-group if and only if H^{\prime} is an elementary abelian p-group.

Preserved attributes IV

- The subgroup H is an elementary abelian p-group if and only if H^{\prime} is an elementary abelian p-group.

Invariants that are not preserved

Theorem

Let G and Q be finite groups with isomorphic tables of marks, and let $H \mapsto H^{\prime}$ denote an isomorphism between their tables of marks. We have that
(1) H and H^{\prime} may not be isomorphic.
(2) Even if H is abelian, H^{\prime} need not be abelian.
(3) H and H^{\prime} may have different tables of marks

Invariants that are not preserved

Theorem

Let G and Q be finite groups with isomorphic tables of marks, and let $H \mapsto H^{\prime}$ denote an isomorphism between their tables of marks. We have that
(1) H and H^{\prime} may not be isomorphic.
(2) Even if H is abelian, H^{\prime} need not be abelian.
(3) H and H^{\prime} may have different tables of marks.

Invariants that are not preserved

Theorem

Let G and Q be finite groups with isomorphic tables of marks, and let $H \mapsto H^{\prime}$ denote an isomorphism between their tables of marks. We have that

(3) H and H^{\prime} may have different tables of marks.

Invariants that are not preserved

Theorem

Let G and Q be finite groups with isomorphic tables of marks, and let $H \mapsto H^{\prime}$ denote an isomorphism between their tables of marks. We have that
(2) Even if H is abelian, H^{\prime} need not be abelian.
(3) H and H^{\prime} mav have different tables of marks.
(9) Even if $K \times L=H$, it may not be possible to find K^{\prime}, L^{\prime} and H^{\prime} such that $K^{\prime} \times L^{\prime}=H^{\prime}$.
© Even if K is normal in H, it may not be possible to choose K^{\prime} and H^{\prime} such that K^{\prime} is normal in H^{\prime}

Invariants that are not preserved

Theorem

Let G and Q be finite groups with isomorphic tables of marks, and let $H \mapsto H^{\prime}$ denote an isomorphism between their tables of marks. We have that
(0) H and H^{\prime} may have different tables of marks.
(1) Even if $K \times L=H$, it may not be possible to find K^{\prime}, L^{\prime} and H^{\prime} such that $K^{\prime} \times L^{\prime}=H^{\prime}$
(0. Even if K is normal in H, it may not be possible to choose K^{\prime} and H^{\prime} such that K^{\prime} is normal in H^{\prime}
© Given H, the table of marks does not determine which subgroup of G is the normalizer of H in G.

Invariants that are not preserved

Theorem

Let G and Q be finite groups with isomorphic tables of marks, and let $H \mapsto H^{\prime}$ denote an isomorphism between their tables of marks. We have that
(3) Even if K is normal in H, it may not be possible to choose K^{\prime} and H^{\prime} such that K^{\prime} is normal in H^{\prime}
(0) Given H, the table of marks does not determine which subgroup of G is the normalizer of H in G.

Example: two semidirect products

Let W denote the group $S_{3} \times C_{8}$; let α be the automorphism of W given by $\alpha\left(\lambda, x^{i}\right)=\left(\lambda, x^{i} \delta(\lambda)\right)$, where δ is the only nontrivial morphism from S_{3} to C_{8}. This defines a semidirect product G of W by C_{2}.
Now let β be the automorphism of W given by $\beta\left(\lambda, x^{i}\right)=\left(\lambda, x^{5 i} \delta(\lambda)\right)$. Similarly, we define the group Q as the semidirect product of W and C_{2} by β. The groups G and Q are nonisomorphic groups of order 96 whose tables of marks are isomorphic. These are the smallest known examnle of such orouns (and helieved by the authors to he the minimal such example)

Example: two semidirect products

Let W denote the group $S_{3} \times C_{8}$; let α be the automorphism of W given by $\alpha\left(\lambda, x^{i}\right)=\left(\lambda, x^{i} \delta(\lambda)\right)$, where δ is the only nontrivial morphism from S_{3} to C_{8}. This defines a semidirect product G of W by C_{2}.
Now let β be the automorphism of W given by $\beta\left(\lambda, x^{i}\right)=\left(\lambda, x^{5 i} \delta(\lambda)\right)$. Similarly, we define the group Q as the semidirect product of W and C_{2} by β.
The groups G and Q are nonisomorphic groups of order 96 whose
tables of marks are isomorphic. These are the smallest known
example of such groups (and believed by the authors to be the
minimal such example)

Example: two semidirect products

Let W denote the group $S_{3} \times C_{8}$; let α be the automorphism of W given by $\alpha\left(\lambda, x^{i}\right)=\left(\lambda, x^{i} \delta(\lambda)\right)$, where δ is the only nontrivial morphism from S_{3} to C_{8}. This defines a semidirect product G of W by C_{2}.
Now let β be the automorphism of W given by $\beta\left(\lambda, x^{i}\right)=\left(\lambda, x^{5 i} \delta(\lambda)\right)$. Similarly, we define the group Q as the semidirect product of W and C_{2} by β.
The groups G and Q are nonisomorphic groups of order 96 whose tables of marks are isomorphic. These are the smallest known example of such groups (and believed by the authors to be the minimal such example).

Proving their minimality

Let $A(n)$ denote the number of non-abelian groups of order n up to isomorphism. Using GAP we can list the values of n and $A(n)$ for n from 2 to 95 (we omit the cases with zeroes and ones):

Proving their minimality

Let $A(n)$ denote the number of non-abelian groups of order n up to isomorphism. Using GAP we can list the values of n and $A(n)$ for n from 2 to 95 (we omit the cases with zeroes and ones): 8: 2; 12: $3 ; 16: 9 ; 18: 3 ; 20: 3 ; 24: 12 ; 27: 2 ; 28: 2 ; 30: 32$: 44; 36: 10; 40: 11; 42: 5; 44: 2; 48: 47; 50: 3; 52: 3; 54: 12; 56 : 10; 60: 11; 63: 2; 64: 256; 66: 3; 68: 3; 70: 3; 72: 44; 76: $2 ; 78$: 5; 80: 47; 81: 10; 84: 13; 88: 9; 90: 8; 92: 2;

Some cases are easy

Theorem

Let n be a prime number, or the square of a prime number, or a number of the form $p q$ where $p>q$ are primes and q does not divide $p-1$. Then all groups of order n are abelian.

This accounts for all the values n such that $A(n)=0$ except for $n=45$, which is easy to prove directly.

Some cases are easy

Theorem

Let n be a prime number, or the square of a prime number, or a number of the form $p q$ where $p>q$ are primes and q does not divide $p-1$. Then all groups of order n are abelian.

This accounts for all the values n such that $A(n)=0$ except for $n=45$, which is easy to prove directly.

$$
n=p q \text { with } q \mid(p-1)
$$

Theorem

Let n be a number of the form $p q$ where $p>q$ are primes and q divides $p-1$. Then there is exactly one isomorphism class of non-abelian groups of order n.

This accounts for all the values n such that $A(n)=1$ except for $n=75$, which is easy to prove directly, since the only non-abelian group of order 75 must be the only non-trivial semidirect product

Similarly we do other cases, until we are left with

$$
n=p q \text { with } q \mid(p-1)
$$

Theorem

Let n be a number of the form $p q$ where $p>q$ are primes and q divides $p-1$. Then there is exactly one isomorphism class of non-abelian groups of order n.

This accounts for all the values n such that $A(n)=1$ except for $n=75$, which is easy to prove directly, since the only non-abelian group of order 75 must be the only non-trivial semidirect product $\left(C_{5} \times C_{5}\right) \rtimes C_{3}$.

Similarly we do other cases, until we are left with

$n=p q$ with $q \mid(p-1)$

Theorem

Let n be a number of the form $p q$ where $p>q$ are primes and q divides $p-1$. Then there is exactly one isomorphism class of non-abelian groups of order n.

This accounts for all the values n such that $A(n)=1$ except for $n=75$, which is easy to prove directly, since the only non-abelian group of order 75 must be the only non-trivial semidirect product $\left(C_{5} \times C_{5}\right) \rtimes C_{3}$.

Similarly we do other cases, until we are left with

The case $A(n)=2$

The seven possible values of n are: $8,27,28,44,63,76,92$.

Orders 8 and 27 are well-known.

The other cases are semidirect products, and the Sylow p-subgroups give non-isomorphic tables of marks.

The case $A(n)=2$

The seven possible values of n are: $8,27,28,44,63,76,92$. Orders 8 and 27 are well-known.
The other cases are semidirect products, and the Sylow p-subgroups give non-isomorphic tables of marks.

The case $A(n)=2$

The seven possible values of n are: $8,27,28,44,63,76,92$.
Orders 8 and 27 are well-known.
The other cases are semidirect products, and the Sylow p-subgroups give non-isomorphic tables of marks.

The case $A(n)=3$

The nine possible values of n are: $12,18,20,30,50,52,66,68$, 70.

The Sylow p-subgroups and some normal p-subgroups give non-isomorphic tables of marks.

The case $A(n)=3$

The nine possible values of n are: $12,18,20,30,50,52,66,68$, 70.

The Sylow p-subgroups and some normal p-subgroups give non-isomorphic tables of marks.

The case $A(n)=5$

There are two possible values for n, namely, 42 and 78 . Both are numbers of the form $2 p q$ with $p>q$ primes and q divides $p-1$. marks of the groups are not isomorphic.

The case $A(n)=5$

There are two possible values for n, namely, 42 and 78 . Both are numbers of the form $2 p q$ with $p>q$ primes and q divides $p-1$. Here we also count normal subgroups to determine the tables of marks of the groups are not isomorphic.

Orders 16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90

For each of these orders, we list the isomorphism classes of non-abelian groups which are not direct products. Depending on
the individual groups, we compute number of elements, number of normal subgroups and of conjugacy classes of subgroups of a given order in order to differentiate their tables of marks.

Orders 16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90

For each of these orders, we list the isomorphism classes of non-abelian groups which are not direct products. Depending on the individual groups, we compute number of elements, number of normal subgroups and of conjugacy classes of subgroups of a given order in order to differentiate their tables of marks.

Remaining 5 cases

$n=32,48,64,72,80$

There are 44 isomorphism classes of non-abelian groups of order 32, 47 non-abelian groups of order 48, 256 non-abelian groups of order 64, 44 non-abelian groups of order 72 and 47 non-abelian groups of order 80 .
Work in progress.

Remaining 5 cases

$n=32,48,64,72,80$

There are 44 isomorphism classes of non-abelian groups of order 32, 47 non-abelian groups of order 48, 256 non-abelian groups of order 64, 44 non-abelian groups of order 72 and 47 non-abelian groups of order 80.
Work in progress...

Final words

Finally ...

Final words

Thank you!

