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Abstract

In this thesis we use Brauer quotients to try to establish an explicit bijection between simple modules

and weights (in the sense of Alperin) for the symmetric groups. We present experimental evidence

– in the form of tables of Brauer quotients of simple modules with respect to weight subgroups –

that we have gathered using the computer algebra systems SYMMETRICA and GAP. We describe

the weight subgroups of certain symmetric groups with respect to which the Brauer quotients of the

simples D(n−1,1) and D(n−2,2) are simple and projective. We prove that by appending triangular

partitions to a trivial partition of even size we can create Brauer quotients that have simple projective

summands. We define 2-stable partitions, and prove a property they have which relates to the type

of explicit correspondence between simple modules and weights under consideration. We also state

several conjectures that we have drawn in the course of our work.
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Chapter 1

Introduction

In this paper we explore ways to try to establish an explicit bijection between irreducible modules

and weights (in the sense of Alperin) for the symmetric groups over fields of positive characteristic.

We begin with a relatively small amount of introductory material that describes the irreducible

kSn-modules using polytabloids and a bilinear form [9]. It has the great advantage that it is possible

to perform explicit theoretical computations for some modules, and we use this in Chapters 4 and 5.

Once we know what the irreducible modules for kSn look like, we define the notion of weight, which

is basically all we need to be able to state Alperin’s Conjecture. We have irreducibles and weights,

and the only thing that is missing is something that will provide a connection between the two: this

is a construction frequently called the Brauer quotient.

Brauer quotients are one of the constructions coming out of the Brauer homomorphism which

was used by Brauer in parameterizing blocks. We believe that Brauer quotients can be used to

provide an explicit bijection between weights and irreducibles. Brauer quotients are not hard to

define, and Section 2.3 has all that is needed to understand how we use them in this paper.

After the first three sections of Chapter 2, the rest of this paper consists mostly of original

research aimed at showing that there is a connection between Brauer quotients, weights and irre-

ducibles. The last section of Chapter 2 presents our original plan to give a combinatorial construction

of an explicit bijection which demonstrates Alperin’s Conjecture for the symmetric groups. Our goal

was to establish an explicit bijection between weights and irreducibles for F2Sn, which can be con-

strued as a criterion that determines when a weight and an irreducible module should be called a

“match”, and we wanted to use Brauer quotients to do so. Weights will be explained in Chapter 2,

but for the moment suffice it to say that a weight is a pair (Q,S), where Q is a p-subgroup of

Sn (p is the characteristic of the field, which for our purposes will usually be 2) and S is a simple

projective module for the quotient group NSn(Q)/Q. If V is a kSn module, the Brauer quotient

of V with respect to the subgroup Q, denoted FPV (Q), is also a module for NSn(Q)/Q. Probably

the most natural way to use Brauer quotients to determine whether a weight (Q,S) and a simple

kSn-module V should be a match is to ask if there is a connection between the NSn(Q)/Q-modules

S and FPV (Q), and the easiest question to ask is whether these two modules coincide.
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If such a natural bijection were to exist, we believe that many of the properties of the irreducible

modules would have weight counterparts and vice-versa. Moreover, since irreducibles are already

naturally bijected with p-regular partitions of n, we should be able to discover connections between

weights and p-regular partitions. We have reason to believe we have begun to unearth some interest-

ing results about 2-regular partitions, as shown in Chapters 5 and 6. The fact that these properties

came about as a consequence of the assumption of the validity of our proposed bijection makes us

think that we might be on the right track.

First allow me to explain how we have been able to test our proposed bijection between weights

and irreducibles. We did it with the help of two computer algebra systems: SYMMETRICA 1.0

(see [11]) and GAP (Groups, Algorithms and Programming, see [6]). We used SYMMETRICA

to create a library of irreducible modules for F2Sn, n ≤ 10. The way to store a representation

for F2Sn is the following: first we fix a set of generators for the group Sn, and our convention is

to use the permutations (1,2) and (1,2,. . . ,n) in that order. Next we ask SYMMETRICA what

the action of (1,2) is on the simple module parameterized by the 2-regular partition λ (denoted

Dλ), and SYMMETRICA returns a matrix of 0’s and 1’s (the elements of F2) that gives the

action of (1,2) on Dλ, that is, the image of (1,2) under the corresponding irreducible representation

ρ : Sn−→GL(m,F2), where m is the dimension of Dλ over F2. Similarly, we obtain the matrix that

is the image of the other generator, (1, 2, . . . , n), under ρ. These two matrices are all we need to

determine the representation ρ, because a morphism of groups is determined by its values on a set

of generators.

The functions that we used to perform operations on these representations were written in the

algebra package GAP, which is very similar to the programming language PASCAL, except that

GAP is also capable of handling many algebraic structures. GAP already has types that correspond

to the notions of groups, matrices, finite fields, morphisms of groups and permutations, but it does

not have a type that models representations. We created a type in GAP to simulate representations,

and what we used was a record that contained the relevant information that is needed to define a

representation:

• its base field

• its dimension

• its domain (the group being represented),including a list of generators of the domain

• the corresponding list of images of the generators under the representation

• a flag that alerts us that it is indeed a representation (used to validate input type for functions)

• (some) operations that can be performed on it, for example, dual, or fixed points

As the last item shows, we created functions that performed various operations on these rep-

resentations. The Appendix contains a list of the most useful functions that we wrote in GAP,

but here we would like to mention two very important ones: one of them computes the Brauer
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quotient of a module with respect to a subgroup, and the other tests whether a module is projective

or not. Using these functions we created tables of dimensions of Brauer quotients of the simple

modules with respect to the weight 2-subgroups of the symmetric groups, and we identified those

Brauer quotients that were simple (using one of GAP’s built-in functions) and projective (using our

software). These tables can be found in Section 3.4.

We were able to verify that our proposed algorithm indeed established the desired bijection

between weights and simple modules for values of n ≤ 8. In other words, given any weight (Q,S)

for F2Sn with n ≤ 8, there is a unique simple F2Sn-module V such that FPV (Q) ∼= S as NSn(Q)/Q-

modules, and given any simple module V there is a unique weight (Q,S) with FPV (Q) ∼= S.

Unfortunately, it is a different story when n = 9. In this case, there is a unique weight for S9,

whose weight subgroup is E2 o E4, such that for any non-trivial simple module V , FPV (E2 o E4)

is zero, and so is not simple and projective. On the other hand, there is also a unique simple

S9-module, namely D(7,2), such that for any weight subgroup Q of S9, FPD(7,2)(Q) is not simple

and projective. Except for these two, our algorithm establishes another explicit bijection between

the remaining simples and weights for S9. This is why we said that our algorithm failed, although

someone might argue that it did not, and that instead of providing one bijection between all weights

and all simples as before, the algorithm first singled out one element from each family (thereby

providing a “match” for the two of them) and then bijected the remaining weights and simples

as usual. Furthermore it is even the case here that the fixed points of E2 o E4 on D(7,2) contain

a simple projective module as a summand; it is just that this summand does not survive in the

Brauer quotient. We have also noticed that our tables of Brauer quotients can always be arranged

in a triangular shape (see Section 3.4), with simple projective modules along the diagonal (except

for this one 0 in the case of S9). This fact provided the motivation to look for ways in which to

modify our algorithm. Another possible way to try to establish a bijection is the following:

Conjecture 1.0.1. The tables of Brauer quotients can always be arranged in a triangular form,

with either 0’s or simple projective modules along the diagonal. Moreover, this will define an explicit

bijection between weights and simple modules.

At the moment it is hard to tell if the criterion we were using will fail irrecoverably for larger

values of n, or if it will work in a modified version. We need to look at more examples, but

unfortunately the sizes of the irreducibles have grown beyond the capabilities of our computer, and

at the moment we are unable to gather more experimental data. In my opinion, the algorithm will

work without modifications for values of n that have a special congruence class, but this is just the

impression that I got after working with Brauer quotients in general, which brings us to Chapter 4.

Since we were unable to continue our experimental work, we tried to prove analytically that

many Brauer quotients do turn out to be simple projective modules. I am happy to say we were

successful, and even though we only considered a limited class of irreducibles, there are indeed

infinitely many instances of simple projective Brauer quotients. We considered first the partition

(n−1, 1), because its corresponding simple module is the easiest one to describe (next to the trivial

module, parameterized by the trivial partition (n)). We proved that when n is odd, the Brauer
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quotient FPD(n−1,1)(H) is either 0 or simple, and that it is projective if and only if the subgroup

H is conjugate to a Sylow 2-subgroup of Sn−3. Since this result is true for infinitely many values of

n, we think that the experimental data we obtained are more than just coincidence, and that there

is indeed a connection between Brauer quotients, weights and simple modules. Next we considered

the partition (n− 2, 2), and this time we had to restrict the values of n to those that are congruent

to 3 modulo 4. We proved that FPD(n−2,2)(H) is simple and projective if and only if H is conjugate

to a subgroup of the form E2 × E2 × E2 × P , where each E2 is an elementary abelian subgroup of

order 2 acting regularly, and P is a Sylow 2-subgroup of S{7,8,...,n}. The last result from Chapter 4

is the description of the subgroups H such that FPD(n−1,1)(H) is simple and projective when n is

congruent to 2 modulo 4. Surprisingly enough, the answer we get is not like the one we had for the

same partition (n − 1, 1) and n odd; it is precisely what we had for the partition (n − 2, 2) when

n is congruent to 3 modulo 4, that is, the only subgroups H for which FPD(n−1,1)(H) is simple

and projective where n ≡ 2( mod 4) are the conjugates of E2 × E2 × E2 × P , where each E2 is an

elementary abelian subgroup of order 2 acting regularly, and P is a Sylow 2-subgroup of S{7,8,...,n}.

Notice that since these are non-overlapping cases (n is congruent to different numbers modulo 4)

this does not contradict the existence of our proposed bijection. By the way, we also characterized

the subgroups H such that the Brauer quotient FPS(n−1,1)(H) is simple and projective, where n is

congruent to 2 modulo 4 and S(n−1,1) is the Specht module described in Section 2.1. We did this

mainly because is was an easy byproduct of the computations needed for D(n−1,1), and we also used

it to construct an example in Section 7.2.1.

Before I can tell you what is in Chapters 5 and 6, I must go back to Section 3.5, which I

skipped earlier. After obtaining explicit bijections between weights and irreducibles for n ≤ 8, we

tried to find a way to summarize this information. We noticed that in order to describe a weight in

characteristic 2, it suffices to give the weight subgroup, that is, if (Q,S) and (Q,T ) are two weights

for the same symmetric group Sn, then they are really the same weight, regardless of what S and

T might appear to be (this does not work in other characteristics; see [3]). This means that in our

case we can keep only the weight subgroups and still be able to identify which weight we have.

Next we recorded the times when a subgroup of a specific form appeared as weight subgroup of

Sn, and noted which partition parameterized the irreducible bijected with that weight. For example,

looking at the tables in Section 3.4, we see that the subgroup E2 appeared as a weight subgroup

of S2, S3, S5 and S8, and the partitions associated with those occurrences are (2), (3), (4,1) and

(5,2,1) respectively. This is how we created the table of partitions in Section 3.5. A great deal

of information can be obtained from this table of partitions, and it appears to have the following

properties:

1. Each weight subgroup Q appears for the first time inside a symmetric group Sn where n is

such that Q has no fixed points on the set {1, . . . , n} After that, Q appears precisely inside

those symmetric groups of the form Sn+t where t is a triangular number (that is, t =
∑r
i=0 i

for some r).

2. The trivial subgroup indexes a row that consists of all triangular partitions (we included the
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triangular partitions of size 0 and 1 for completeness).

3. The first partition of every row has empty 2-core. The second partition has 2-core of size 1,

the third has 2-core of size 3 and the fourth has 2-core of size 6. In other words, the 2-core

of every partition along the i-th column is the i-th triangular partition (where ∅ is the first

triangular partition).

4. Along every row, each partition is contained in the next one. The difference in size from the

first partition and the i-th one on any given row is the i-th triangular number.

Item 1 is proved implicitly in [3]. Item 2 is just stating the well-known fact that in characteristic

2, the only symmetric groups with simple projective modules are the St with t a triangular number,

and that such modules are parameterized by the corresponding triangular partitions. On the other

hand, items 3 and 4 were a complete surprise. The arrangement of the partitions seems to follow a

natural pattern, and the interesting thing is that these are now purely combinatorial issues, outside

the realm of algebra.

Item 3 provided the motivation to try to prove results that related modules to partitions. One

of the conjectures that first come to mind is the following:

Conjecture 1.0.2. Let Q be a weight subgroup of Sn, where Q has no fixed points on {1, . . . , n},
and let λ be a partition of m such that FPDλ(Q) is simple and projective. Then the 2-core of λ has

size m− n.

We have been able to prove a partial converse so far: “Let n be an even number and Q a Sylow

2-subgroup of Sn. Let t be a triangular number and λ the partition of n+ t obtained by adding n

nodes to the first row of the triangular partition µ of size t. Then FPDλ(Q) has a simple projective

summand of multiplicity one, given by Dµ”. This result is in Chapter 5.

We also came up with the following conjecture, which is a completely combinatorial question:

Conjecture 1.0.3. It is possible to arrange all 2-regular partitions in an infinite table satisfying

the conditions 3 and 4 mentioned above.

We have proved that if such a table can be created, there is a class of partitions, which we call

2-stable, such that if λ is 2-stable, then all the partitions to the right of λ (that is, larger than λ

and in the same row) are uniquely determined, and we can construct them explicitly from λ (this is

in Chapter 6). We think this is a huge step towards providing such an infinite array of partitions,

because the rules for determining where a partition can go are relatively tight. By the way, the fact

that the table in Section 3.5 was derived from our proposed algorithm, that the partitions exhibit

the behaviour we described and that we managed to prove a partial result in that direction are all

good indicators that we might be on the right track. Even the partition (7,2), which caused great

commotion before, fits inside our table exactly where it is supposed to be!

In Chapter 7 we provide some examples that show that the conditions that we placed on the

number n in the theorems of Chapter 4 are necessary, that is, counterexamples can be found
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otherwise. We also present some modifications to our algorithm, which promising though they

seemed, failed to establish the desired bijection (we include them mostly as a reference for those

who would like to try something similar). Finally, Section 7.3 has some suggestions for continuing

our work; some of them are presented in the form of a conjecture.

It is my hope that after reading this paper Brauer quotients will seem like a natural choice to

try to relate weights and simple modules.

6



Chapter 2

Preliminaries

In this chapter we describe the irreducible modules of the group algebras of the symmetric groups

using the characteristic-free approach in [9]. We state Alperin’s Conjecture, which still remains one

of the most important open problems in the modular representation theory of finite groups, but

which has already been proved in the case of symmetric groups (see [3]). We define Brauer quotients,

a relatively new tool in representation theory, which has been successfully used by authors such as

Puig and Thévenaz [15]. We end this chapter with an algorithm that we put forward as a first

approximation to finding a combinatorial proof of Alperin’s Conjecture for the symmetric groups.

2.1 Some important kSn-modules

We define the modules Mλ, Sλ and Dλ following James [9], and prove some results that we shall

need later. The simple kSn-modules, as is well known, can be parameterized by certain partitions

of n called p-regular, where p is the characteristic of the field k. Moreover, it is possible to construct

each simple module from its associated partition, and although in general this can be a cumbersome

process, there are some partitions whose irreducible modules can be readily described using this

method. Furthermore, in some cases it is also possible to find a formula that describes a simple

module as a virtual difference of permutation modules, which will make the simple modules easier

to manipulate. There is yet another advantage arising from the use of partitions to parameterize

simple kSn-modules: partitions are very visual objects, and it is far easier to discover a pattern

by looking at a table of partitions like the one at the end of this chapter than by studying their

corresponding simple modules.

In this section n is a natural number, k is a field of characteristic p > 0 (unless otherwise stated)

and λ is a partition of n.

Definition 2.1.1. A λ-tableau is one of the n! arrays of integers obtained by replacing each node

in the partition λ by one of the integers 1, 2, . . . , n, allowing no repeats. If t is a tableau, its row

stabilizer , Rt, is the subgroup of Sn consisting of the elements which fix all rows of t setwise. The
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column stabilizer of t, denoted Ct, is the subgroup of Sn consisting of the elements which fix all

columns of t setwise. The signed column sum of t, denoted κt, is the element of kSn given by

κt :=
∑
π∈Ct

(−1)sign(π)π.

We define an equivalence relation on the set of λ-tableaux by t1 ∼ t2 if and only if πt1 = t2 for

some π ∈ Rt1 . The tabloid , {t} containing t is the equivalence class of t under this relation. The

kSn-module Mλ =Mλ
k is the vector space over k whose basis elements are the various λ-tabloids.

The polytabloid , et, associated with the tableau t is given by

et := κt{t}.

The Specht module, Sλ=Sλk for the partition λ is the submodule of Mλ spanned by polytabloids

(this is indeed a kSn-module).

We also define an Sn-invariant, symmetric, non-singular bilinear form <,> on Mλ, whose values

on pairs of tabloids is given by

< t1, t2 >:=

1 if t1 = t2,

0 if t1 6= t2.

The partition λ is p-singular if it has at least p rows of the same size; otherwise, λ is p-regular .

The module Dλ=Dλ
k is defined as

Dλ := Sλ/(Sλ ∩ Sλ⊥)

where λ is a p-regular partition.

Theorem 2.1.2. (James) As λ varies over p-regular partitions of n, Dλ varies over a complete set

of inequivalent irreducible kSn-modules. Each Dλ is self-dual and absolutely irreducible. Every field

is a splitting field for Sn.

For a proof of this result, see [9].

Remark 2.1.3. For the remainder of this chapter, k will be the field of two elements.

Example 2.1.4. Let λ = (n) be the partition with just one row of length n. Then all λ-tableaux are

row equivalent, so there is only one λ-tabloid, and M (n) = k is the one dimensional trivial module.

We also have that S(n) = D(n) = k.

Of all the other Mλ modules, the easiest to deal with are the ones given by two-part partitions.

The following well-known result provides a way of visualizing these modules.

Lemma 2.1.5. The module M (n−i,i) is isomorphic to the kSn-permutation module of all subsets of

{1, 2, . . . , n} of size i.

Proof. The isomorphism is given by sending an (n− i, i)-tabloid to the set of numbers in its second

row.
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In the very special case when λ = (n−1, 1) (and only for the field of two elements) we additionally

have

Lemma 2.1.6. The module M (n−1,1) is isomorphic to the module consisting of all subsets of

{1, . . . , n}, where addition is given by the symmetric difference of sets, and where Sn acts by permut-

ing the elements of each set. The isomorphism takes S(n−1,1) to the family of subsets of {1, . . . , n}
of even cardinality. If n is odd, then S(n−1,1) = D(n−1,1). If n is even, then D(n−1,1) is isomorphic

to the quotient of the family of subsets of even cardinality modulo the equivalence relation that pairs

a set with its complement.

Proof. Notice that the family of all subsets of {1, . . . , n} is a vector space over the field of two

elements, and that the singletons are a basis permuted by Sn. The isomorphism between M (n−1,1)

and this module is given (as before) by sending the basis of (n − 1, 1)-tabloids to their respective

second rows. Note that the elements of S(n−1,1) are precisely the linear combinations of an even

number of tabloids, which correspond to the subsets of even cardinality. Furthermore, the bilinear

form on the subsets A and B now is given by the cardinality of A∩B modulo 2. The only non-empty

subset that can be orthogonal to all subsets of even cardinality is {1, . . . , n}, which is in S(n−1,1) if

and only if n is an even number. Thus D(n−1,1) = S(n−1,1) if n is odd, and is as described in the

statement of the Lemma when n is even.

We now record a number of well-known results which can be found either explicitly or implicitly

in [9].

Corollary 2.1.7. If n is odd then

M (n−1,1) = D(n−1,1) ⊕ k

Proof. We already know that D(n−1,1) = S(n−1,1) is a submodule of codimension 1. The complement

is generated by the vector {1, . . . , n}, where we have identified M (n−1,1) with the power set of

{1, . . . , n}.

Now we proceed to derive a similar formula for M (n−2,2).

Lemma 2.1.8. The image of the map

ϕ : M (n−2,2) −→M (n−1,1), {α, β} 7→ {α}+ {β}

is S(n−1,1). The kernel of ϕ contains S(n−2,2) as a submodule of codimension one.

Proof. Now we switch to the notation suggested by Lemma 2.1.5, not by Lemma 2.1.6. We can see

that ϕ is a well-defined morphism of kSn-modules. The image of ϕ is generated by all elements of

the form {α}+ {β} (with α 6= β), which also generate S(n−1,1) (they are the polytabloids). There

are module generators (polytabloids) of S(n−2,2) of the form {2, β} + {1, β} + {2, 3} + {1, 3} or of

the form {α, β}+ {1, β}+ {α, 2}+ {1, 2}; both of them will go to zero under ϕ. Finally, notice that

the kernel of ϕ has dimension n(n−1)
2 − (n− 1) = n(n−3)

2 + 1, which is one more than the dimension

of S(n−2,2) (see the Hook Formula, result 20.1 in [9] for the dimension of the Specht modules).
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For the rest of this section n is congruent to 3 modulo 4.

Lemma 2.1.9. When n ≡ 3( mod 4), we have that S(n−2,2) = D(n−2,2).

Proof. This follows from Theorem 23.13 in [9].

Now we can quickly get the composition factors of M (n−2,2).

Corollary 2.1.10. When n ≡ 3( mod 4) we have that the composition factors of the module

M (n−2,2) are k, D(n−1,1) and D(n−2,2).

Proof. The image of ϕ is S(n−1,1) ∼= D(n−1,1) (because n is odd) and the kernel has k and S(n−2,2) ∼=
D(n−2,2) (because n is congruent to 3 modulo 4) as composition factors.

Our next result is a general statement about modules for arbitrary rings

Proposition 2.1.11. Let R be a ring, M an R-module, S a simple R-module which is a composition

factor of M of multiplicity 1. Then S is a direct summand of M if and only if there exist non-zero

maps θ : S−→M and φ : M−→S. Moreover, in the latter case, such maps must necessarily split.

Proof. Necessity: Take the usual inclusion and projection. Sufficiency: We must show that both θ

and φ are split. Notice that φθ 6= 0 (otherwise the series 0 < Im(θ) ≤ Ker(φ) < M would give two

composition factors isomorphic to S), so φθ must be an automorphism of S. This proves that φ is

a split epimorphism and θ is a split monomorphism.

We can combine the previous results to get

Proposition 2.1.12. When n is congruent to 3 modulo 4 we have

M (n−2,2) ∼= D(n−2,2) ⊕ k ⊕D(n−1,1).

Proof. We know that M (n−2,2) has three different composition factors, so we can apply the previous

proposition. The map ϕ gives rise to a morphism from M (n−2,2) onto D(n−1,1), and both modules

are self-dual, so there is a non-zero map from D(n−1,1) to M (n−2,2). By the proposition ϕ splits,

so M (n−2,2) is the direct sum of D(n−1,1) and the kernel of ϕ. Similarly, D(n−2,2) is a submodule

of the kernel of ϕ, so D(n−2,2) is embedded in M (n−2,2) and both modules are self-dual, so there

exists an epimorphism from M (n−2,2) onto D(n−2,2). By the proposition the inclusion of D(n−2,2)

into M (n−2,2) is split, so in particular the inclusion of D(n−2,2) into the kernel of ϕ is split, with k

as a direct complement.

Now this decomposition theorem follows easily.

Corollary 2.1.13. There is a decomposition

M (n−2,2) ∼= D(n−2,2) ⊕M (n−1,1).

Proof. It follows from the previous proposition and the fact that M (n−1,1) ∼= D(n−1,1) ⊕ k because

n is odd.
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2.2 Alperin’s Conjecture

We give the definition of weight and formulate Alperin’s Conjecture in its most general form. We

mention some classes of groups for which it is known to be valid (including the symmetric groups)

and we note the possible advantages of a combinatorial proof, that is, an explicit bijection between

weights and irreducible modules.

Throughout this section, G will be a finite group, p a prime number, and k a splitting field for

G in characteristic p. All our modules will be finite dimensional over k.

Definition 2.2.1. A weight for G is a pair (Q,S) where Q is a p-subgroup and S is a simple module

for k[NG(Q)] which is projective when regarded as a module for k[NG(Q)/Q].

Remark 2.2.2. Since S is k[N(Q)]-simple and Q is a p-subgroup of NG(Q), it follows that Q acts

trivially on S, so S is also a k[NG(Q)/Q]-module and the definition makes sense. Moreover, S is

k[NG(Q)/Q]-simple as well.

Remark 2.2.3. If we replace S by an isomorphic k[NG(Q)]-module we consider this the same weight,

and we make the same identification when we replace Q by a conjugate subgroup (so that the

normalizers will be conjugate, too).

Now we can formulate the main problem that we shall discuss in this section.

Theorem 2.2.4. ( Alperin’s Conjecture) The number of weights for G equals the number of simple

kG-modules.

A stronger version of the preceding statement is that there is a bijection within each block of

the group algebra.

Definition 2.2.5. If (Q,S) is a weight for G, then S belongs to a block b of NG(Q) and this block

corresponds with a block B of G via the Brauer correspondence; hence we can say that the weight

(Q,S) belongs to the block B of G so the weights are partitioned into blocks.

Theorem 2.2.6. (Alperin’s Conjecture, Block Form) The number of weights in a block of G equals

the number of simple modules in the block.

This version of the conjecture implies the original one, as it can be obtained by summing the

equalities from the stronger conjecture over the blocks. This stronger conjecture has been proved

when G is a:

• Finite group of Lie type and characteristic p (Cabanes, [4]).

• Solvable group (Okuyama, [13]).

• Symmetric group (Alperin and Fong, [3]).

• GL(n, q) and p does not divide q (Alperin and Fong, [3]).
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Alperin and Fong’s proof in the case of symmetric groups was just an observation of a numerical

equality which did not suggest a deeper reason for the relationship. For finite groups in general one

does not expect to have any canonical bijection between weights and simple modules; as a matter

of fact, Alperin himself says this is unlikely (see [2], p 369). For groups of Lie type in their defining

characteristic there is a canonical bijection (described in [2]). Since symmetric groups and groups of

Lie type have such strong connections in their representation theory, it is reasonable to ask whether

there is some canonical bijection in the case of symmetric groups.

If true, Alperin’s conjecture would imply a number of known results, until now unrelated [2]. It

is also reasonable to expect that if an explicit bijection can be given to prove it, this may reveal

new connections between simple kG-modules and weights; there are many results known about the

former, and the latter are related to the blocks of defect zero, which are not as easy to deal with

as the simple modules. In fact, this is really the true importance of Alperin’s conjecture in that it

provides a connection between the blocks of defect zero and the set of all simple modules. More

specifically, Alperin’s conjecture has been shown by Robinson [12] to be equivalent to a statement

which expresses the number of blocks of defect zero of a group in terms of the number of p-modular

irreducibles of sections of the group of the form NG(P )/P , P ≤ G a p-subgroup. These latter

numbers are easy to compute, since by a theorem of Brauer the number of p-modular irreducibles

of a group equals the number of p-regular conjugacy classes.

2.3 Brauer quotients

We define Brauer quotients and prove some of their properties, which we shall later use in our

calculations. In this section k is an arbitrary field, Fq is the field with q elements, G an arbitrary

finite group, H a subgroup of G, and V a kG-module. We denote by V G the fixed points of V under

G.

Definition 2.3.1. The map trGH :V H−→V G given by

m 7→

(
l∑
i=1

gi

)
m,

where G = tli=1giH, is called the relative trace from H to G. The Brauer quotient of V with respect

to H is defined as

FPV (H) := V H/
∑
K<H

trHK(V K).

This is a k[NG(H)]-module, where H acts trivially, so it is a k[NG(H)/H]-module. The preceding

definition is a particular example of the Brauer quotient of a Mackey functor: in our case we are

using the fixed points Mackey functor. Constructions such as this appear in recent work by various

authors such as Puig and Thévenaz, see [14].

Example 2.3.2. Let H = {1}. Then H has no proper subgroups, so we have that FPV ({1}) =

V H = V for all kG-modules V .
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Example 2.3.3. Let k be a field of characteristic p, G any finite group, H a subgroup of G, and

V = k the trivial kG-module. If H is a p-subgroup of G, then as is well known all the relative

traces from proper subgroups of H to H are identically zero, and FP k(H) = k. On the other hand,

if H is not a p-subgroup, the relative trace from a Sylow p-subgroup of H to H is not zero, and

FP k(H) = 0.

For convenience we state some well-known properties of Brauer quotients that will allow us to

simplify our computations. The proof of the first one follows from the fact that both fixed points

and relative traces preserve direct sums. The second proposition is result (27.6) in [15].

Proposition 2.3.4. Brauer quotients preserve direct sums of kG-modules, that is,

FPV1⊕V2(H) ∼= FPV1(H)⊕ FPV2(H)

Proposition 2.3.5. Let V be a kG-module that is also an H permutation module, i.e. there exists

a basis X of V over k that is also an H-set, and let Y denote the fixed points of H on the set X.

Then the normalizer of H in G acts on the set Y , and there is an isomorphism of k[NG(H)]-modules

FPV (H) ∼= kY

where kY denotes the permutation module on the set Y .

We can combine the preceding results to obtain effortlessly the Brauer quotients of many mod-

ules.

Example 2.3.6. If H 6= {1}, then FP kG(H) = 0 since H does not fix any elements of G, so

FP (kG)n(H) = 0 and FPV (H) = 0 for any projective kG-module V . We shall later study in

greater detail other connections between Brauer quotients and projectivity.

2.4 Proposed Algorithm

Alperin’s Conjecture has been proved for all symmetric groups, so we know that the number of

weights for Sn equals the number of simple kSn-modules. However, no explicit bijection between

those two sets is known yet. We are about to present an algorithm that establishes an explicit

bijection between weights and irreducibles for F2Sn when n ≤ 8. The idea is to use Brauer quotients

to determine when a weight and an irreducible F2Sn-module are “compatible”. The procedure was

suggested by Webb.

Consider a simple F2Sn-module V , and for each weight (Q,S) of F2Sn compute the Brauer

quotient of V with respect to the weight subgroup Q. More often than not the Brauer quotient will

turn out to be 0; however, there are times when a weight (Q,S) has the property that the Brauer

quotient of V with respect to Q is precisely the NSn(Q)/Q-module S. Furthermore, for all values

of n ≤ 8, given any irreducible module V there is exactly one weight (Q,S) such that the Brauer

quotient of V with respect to the subgroup Q is isomorphic to the NSn(Q)/Q-module S, and given
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any weight (Q,S), there is a unique irreducible module V such that FPV (Q) ∼= S. This assignment

defines an explicit bijection between irreducibles and weights for F2Sn, n ≤ 8.

The previous fact was proved using mostly the computer software that we wrote (described in

Chapter 3). The empirical evidence that we gathered provided the motivation to determine other

instances when the Brauer quotient of a simple F2Sn-module is simple and projective (Chapters 4

and 5). The careful scrutiny of the table of partitions in Section 3.5 led us to the discovery of

2-stable partitions and their fundamental property (described in Chapter 6). Much to our chagrin,

our algorithm failed to provide a match between an irreducible and a weight for F2S9, as shown

in Section 3.4. However, even in this case there is an obvious bijection described between weights

and irreducibles, and we think that after some modifications, a similar procedure may be used to

provide a combinatorial proof of Alperin’s Conjecture. We suggest ways in which this might be

achieved in the Epilogue, along with other conjectures that have arisen from our work.
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Chapter 3

Computer Assisted Methods

We created computer software in GAP [6] to prove that the algorithm provides an explicit bijection

between weights and irreducibles for Sn with n ≤ 8, and in a modified form with n = 9. For n ≥ 10

some of the representations are quite large and take a lot of computer time to handle. The software

that we created was the following:

• A library of weight subgroups of Sn for the prime 2.

• A library of irreducible modules of Sn (using SYMMETRICA 1.0 [11]).

• The subroutines which perform the operations on modules that are required to establish the

desired correspondence.

We now explain what each of the preceding items consists of.

3.1 Library of weight subgroups of Sn for the prime 2.

Alperin gives a description of the weight subgroups of Sn in [3]. We start with some relevant

definitions.

Definition 3.1.1. Let G be a finite group, Q a p-subgroup of G. We say that Q is a p-radical

subgroup of G if Q = Op(NG(Q)), that is, if Q is the largest normal p-subgroup of its normalizer

in G.

Definition 3.1.2. Let k be a field of characteristic p, G a finite group, Q a p-subgroup of G. We call

Q a weight subgroup of G if there is a simple k[NG(Q)]-module S which is k[NG(Q)/Q]-projective,

that is, if (Q,S) is a weight for G.

The last two concepts are related. Our next result gives a necessary (though not sufficient)

condition for a subgroup to be a weight subgroup.

Proposition 3.1.3. [3] If Q is a weight p-subgroup of G, then Q is p-radical.
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A further criterion that can be used when G = Sn is the following.

Theorem 3.1.4. [3] If Q is a weight subgroup of Sn for the prime p, then Q is a direct product of

wreath products of elementary abelian groups acting regularly.

We give counterexamples to the converses of Proposition 3.1.3 and Theorem 3.1.4 in Exam-

ple 3.1.5. However, these results are very useful because they help us narrow our search for weight

subgroups of Sn.

From now on, the only prime number that we shall be interested in is p = 2, and E2n will denote

the elementary abelian group of order 2n. For each value of n ≤ 8, we created a list of subgroups of

Sn which were direct products of wreath products E2m ’s acting regularly, and it is easy to verify –

either theoretically or using GAP – which ones are 2-radical. The following example might help to

illustrate this technique.

The weight subgroups of S7: By Theorem 3.1.4, we know that up to conjugacy, the first candi-

dates for weight subgroups of S7 for the prime 2 are the following direct products of wreath products

acting regularly:

2-subgroups Generators

(i) {1} ()

(ii) E2 (1,2)

(iii) E4 (1,2)(3,4), (1,3)(2,4)

(iv) E2 o E2 (1,2), (1,3)(2,4)

(v) E2 × E2 (1,2), (3,4)

(vi) E2 × E2 × E2 (1,2), (3,4), (5,6)

(vii) E2 × E4 (1,2), (3,4)(5,6), (3,5)(4,6)

(viii) E2 × (E2 o E2) (1,2), (3,4), (3,5)(4,6)

Note that these can all be embedded in S6, because [S7 : S6] = 7 is not divisible by 2. However,

the Op(N) will change with the embedding.

Notice that although (iii) and (v) are isomorphic as groups, they are treated as different can-

didates. The reason for this is that their embeddings in S7 using the regular action are essentially

different: E4 acts regularly as the group generated by the permutations (1, 2)(3, 4) and (1, 3)(2, 4),

whereas for E2 we need the permutation (1, 2), so E2 × E2 is generated by the permutations (1, 2)

and (3, 4). These subgroups are not conjugate in S7 (their cyclic structures are different).

Recall that if A and B are groups acting on a and b points respectively, then A×B acts on a+ b

points, and A oB acts on ab points. From this and the fact that the E2m have to act regularly, we

conclude that the list we proposed is complete.

Using GAP we can verify that the 2-radical subgroups are (i), (ii), (iii), (iv), (vi), (vii) and (viii).

Notice that (iii) is 2-radical, but (v) is not!

Finally, for each of these subgroups H we explicitly compute the quotient NS7(H)/H, to see

which ones admit a simple projective module. In this way we eliminate two more subgroups, which

we present in the next example.
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Example 3.1.5. The subgroups {1} and E2 of S7 are 2-radical but are not weight 2-subgroups. Their

respective quotients NS7(H)/H are S7 and S5 (neither 7 nor 5 is a triangular number).

3.2 Library of irreducible modules of Sn.

We used SYMMETRICA 1.0 [11] to obtain matrices representing the action of the permutations

(1, 2) and (1, 2, . . . , n) on the irreducible modules of Sn. We then converted the output files from

SYMMETRICA into a form which can be read by GAP.

We defined a data structure in GAP that corresponds to the notion of representation. It consists

of a record whose fields include: the group represented, the dimension of the representation, a list of

generators of the group and a list of matrices that give the action of the generators on the underlying

vector space.

An example of an irreducible representation for S7 is the following:

gap> M:=ModularIrreducible([1,2],2);

Representation( Group( (1,2), (1,2,3) ), Images

[ [ 1, 1 ],

[ 0, 1 ] ]

[ [ 1, 1 ],

[ 1, 0 ] ]

)

gap> RecFields(M);

[ "group", "genimages", "field", "dimension",

"isRepresentation", "operations" ]

The last line shows the fields of the record M , that is, the different objects associated to the

representation M as it is stored in the computer.

3.3 Library of subroutines.

We have available within GAP a library of subroutines which we use to handle modular repre-

sentations. As well as standard operations such as fixed points, dual, tensor product, submodule

and quotient module, we also have implemented routines which compute with the relative trace,

culminating in the computation of the Brauer quotient and a test for projectivity. The Appendix

has a list of the most useful routines, with some brief descriptions of what they do.

3.4 Tables of dimensions of Brauer quotients

These are the tables with the dimensions of the Brauer quotients of the irreducible F2Sn-modules

with respect to the weight subgroups of Sn. The rows of the tables are labelled by weight subgroups,
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Table 3.1: Dimensions of Brauer quotients for S2

[2]

E2 1

Table 3.2: Dimensions of Brauer quotients for S3

[3] [2,1]

E2 1 0

{1} 1 2

and the columns by irreducible F2Sn-modules (which are denoted by the 2-regular partitions which

parameterize them). The bijection we proposed is indicated by putting a box around the place where

there is a weight. We should like to remark that the boxed entries represent the only nontrivial

projective modules which appear in these tables, and all of the boxed entries are blocks of defect

zero. Most of the entries were obtained using our computer software.

3.5 Table of partitions

After defining explicit bijections between weights and irreducibles, the next natural question to ask

is whether there is a pattern hidden in this construction. The following table of partitions is an

attempt at unraveling this pattern. Notice that since the characteristic is 2, each weight (Q,S) for Sn
is determined by its weight subgroup Q (using the fact proved in [3] that the quotient NSn(Q)/Q is

a direct product of GL(mi, 2), and that each GL(m, p) has exactly p−1 simple projective modules).

Each weight subgroup of Sn is used to index one row of the table; the entries along that row are the

partitions that parameterize the irreducibles assigned to the weight using the proposed algorithm.

Table 3.3: Dimensions of Brauer quotients for S4

[4] [3,1]

E2 o E2 1 0

E4 1 2
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Table 3.4: Dimensions of Brauer quotients for S5

[5] [4,1] [3,2]

E2 o E2 1 0 0

E2 1 2 0

E4 1 0 2

Table 3.5: Dimensions of Brauer quotients for S6

[6] [5,1] [4,2] [3,2,1]

E2 × (E2 o E2) 1 0 0 0

E2 × E2 × E2 1 2 0 0

E2 × E4 1 0 2 0

{1} 1 6 6 16

Table 3.6: Dimensions of Brauer quotients for S7

[7] [6,1] [5,2] [4,2,1] [4,3]

E2 × (E2 o E2) 1 0 0 0 0

E2 o E2 1 2 0 0 0

E2 × E2 × E2 1 0 2 0 0

E2 × E4 1 0 0 2 0

E4 1 2 0 2 4

Table 3.7: Dimensions of Brauer quotients for S8

[8] [7,1] [6,2] [5,3] [5,2,1] [4,3,1]

(E2 o E2) o E2 1 0 0 0 0 0

E2 o E4 1 2 0 0 0 0

(E2 o E2)× E4 1 0 2 0 0 0

E4 o E2 1 0 0 2 0 0

E2 1 4 6 0 16 0

E8 1 3 0 3 0 8
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Table 3.8: Dimensions of Brauer quotients for S9

[9] [8,1] [7,2] [5,4] [5,3,1] [4,3,2] [6,2,1] [6,3]

(E2 o E2) o E2 1 0 0 0 0 0 0 0

(E2 o E2)× E2 1 2 0 0 0 0 0 0

E2 o E4 1 0 0 0 0 0 0 0

E4 o E2 1 0 0 2 0 0 0 0

E8 1 0 0 4 8 0 0 0

E2 × E4 1 2 0 0 0 4 0 0

(E2 o E2)× E4 1 0 3 0 0 0 2 0

E2 × E2 × E2 1 2 2 0 0 0 2 4

Table 3.9: Two-regular Partitions

{1}: ∅

E2:

E2 o E2:

E2 × (E2 o E2):

(E2 o E2) o E2:

E4:

E2 × E2 × E2:

E2 o E4:

E2 × E4:

(E2 o E2)× E4:
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E8:

E4 o E2:

Notice the following facts about this table of partitions:

1. Each weight subgroup Q appears for the first time inside a symmetric group Sn where n is

such that Q has no fixed points on the set {1, . . . , n} After that, Q appears precisely inside

those symmetric groups of the form Sn+t where t is a triangular number (that is, t =
∑r
i=0 i

for some r).

2. The trivial subgroup indexes a row that consists of all triangular partitions (we included the

triangular partitions of size 0 and 1 for completeness).

3. The first partition of every row has empty 2-core. The second partition has 2-core of size 1,

the third has 2-core of size 3 and the fourth has 2-core of size 6. In other words, the 2-core

of every partition along the i-th column is the i-th triangular partition (where ∅ is the first

triangular partition).

4. Along every row, each partition is contained in the next one. The difference in size from the

first partition and the i-th one on any given row is the i-th triangular number.

Item 1 is proved implicitly in [3]. Item 2 is just stating the well-known fact that in characteristic 2,

the only symmetric groups with simple projective modules are the St with t a triangular number,

and that such modules are parameterized by the corresponding triangular partitions. On the other

hand, items 3 and 4 were a complete surprise. The arrangement of the partitions seems to follow a

natural pattern, and the interesting thing is that these are now purely combinatorial issues, outside

the realm of algebra.

Item 3 provided the motivation to try to prove results that related modules to partitions. One of

the conjectures that first come to mind is the following:

Conjecture 3.5.1. Let Q be a weight subgroup of Sn, where Q has no fixed points on {1, . . . , n},
and let λ be a partition of m such that FPDλ(Q) is simple and projective. Then the 2-core of λ has

size m− n.

We have been able to prove a partial converse so far: “Let n be an even number and Q a Sylow

2-subgroup of Sn. Let t be a triangular number and λ the partition of n+ t obtained by adding n

nodes to the first row of the triangular partition µ of size t. Then FPDλ(Q) has a simple projective

summand of multiplicity one, given by Dµ”. This result is in Chapter 5.

We also came up with the following conjecture, which is a completely combinatorial question:

Conjecture 3.5.2. It is possible to arrange all 2-regular partitions in an infinite table satisfying

the conditions 3 and 4 mentioned above.
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Remark 3.5.3. It is easy to construct a table satisfying almost all of these requirements except that

we cannot guarantee that each partition be contained in the next one along its row.

We have proved that if such a table as the one described in Conjecture 3.5.2 can be created, there

is a class of partitions, which we call 2-stable, such that if λ is 2-stable, then all the partitions

to the right of λ (that is, larger than λ and in the same row) are uniquely determined, and we

can construct them explicitly from λ (this is in Chapter 6). We think this is a huge step towards

providing such an infinite array of partitions, because the rules for determining where a partition

can go are relatively tight. By the way, the fact that the table in Section 3.5 was derived from our

proposed algorithm, that the partitions exhibit the behaviour we described and that we managed to

prove a partial result in that direction are all good indicators that we might be on the right track.

Even the partition (7,2), which caused great commotion before, fits inside our table exactly where

it is supposed to be!
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Chapter 4

Brauer quotients

In this chapter we answer the question “when is the Brauer quotient of a module V with respect

to a subgroup H of Sn both simple and projective as an NSn(H)/H-module?”, in the cases when

V = D(n−1,1) with n odd, V = D(n−2,2) with n ≡ 3( mod 4), V = S(n−1,1) with n ≡ 2( mod 4) and

V (or rather, W ) = D(n−1,1) with n ≡ 2( mod 4) and the field is F2. The conditions imposed on

the number n are necessary so that we can use the results from Section 2.1; the Epilogue has some

counterexamples for other values of n.

4.1 Preliminaries

We remind the reader of some useful facts about the representations of Cartesian products of groups.

Proposition 4.1.1. Let k be a splitting field for the finite groups R and S, let U, T be finite

dimensional modules for kR and kS respectively, and let k(R×S) act on U ⊗k T via (r, s)(u⊗ t) =

ru⊗ st. Then

(i) U ⊗k T is a simple k[R × S]-module if and only if U is a simple kR-module and T is a simple

kS-module.

(ii) U ⊗k T is a projective k[R × S]-module if and only if U is a projective kR-module and T is a

projective kS-module.

Proof. (i) A proof of this result can be found in [5], Theorem (10.33).

(ii) It is clear that the tensor product of two projective modules is projective. Assume that U ⊗ T
is a projective module for the group R × S. Then its restriction to the subgroup R = R × {1}
is projective, and this is isomorphic to several copies of the R-module U (as many copies as the

dimension of T over k), which proves that U must be projective. A similar argument proves that T

is a projective kS-module.

This situation arises naturally when a subgroup H of Sn has fixed points on the set {1, . . . , n}.

Lemma 4.1.2. Let H be a subgroup of the symmetric group SM with fixed points F and let Θ be
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the complement of F in M . Then

NSM (H)/H = (NSΘ(H)/H)× SF

Proof. One containment is immediate. Now let τ ∈ NSM (H). Then τ permutes the fixed points F

of H, so τ = αβ with α ∈ SΘ and β ∈ SF . It follows that α is in NSΘ(H).

As a result, a module for the quotient group NSX (H)/H is really a module for the product

(NSΘ(H)/H)× SF . In this context, if we refer to a kSF -module U as a k[N/H]-module, we mean

k ⊗k U , that is, NSΘ(H)/H acts trivially on U . Notice that the k[N/H]-module k ⊗k U will be

simple and projective if and only if both k and U are simple and projective modules for NSΘ(H)/H

and SF respectively, that is, if and only if H is a Sylow 2-subgroup of SΘ and U is a simple and

projective kSF -module.

4.2 Brauer quotient of D(n−1,1), n odd

We prove that the Brauer quotient of D(n−1,1) is either 0 or simple, and describe the subgroups H

of Sn with respect to which the Brauer quotient is also projective as a module for NSn(H)/H. Note

that the number of fixed points of any 2-subgroup H on the set {1, . . . , n} must be odd because n

is odd.

Theorem 4.2.1. ( Webb, private communication) Let k be the field of two elements, n an odd

number greater than 1, H a 2-subgroup of Sn whose fixed points on the set {1, . . . , n} are precisely

{1, . . . , r}, N = NSn(H) and V the simple module D(n−1,1). If r = 1 then FPV (H) = 0. If r > 1

then the natural quotient N/H−→Sr splits, and the action of N/H on FPV (H) is isomorphic to

that of Sr on D(r−1,1).

Proof. We have that M (n−1,1) = D(n−1,1) ⊕ k, so

FPM(n−1,1)(H) ∼= FPV (H)⊕ FP k(H)

But M (n−1,1) is an H-permutation module with permutation basis the set {1, . . . , n} (as in

Lemma 2.1.5), so its Brauer quotient with respect to H is the permutation module on the

set {1, . . . , r} (where N/H acts as Sr) by Proposition 2.3.5. If r = 1 then cancellation gives

FPV (H) = 0. If r > 1 then the previous permutation module is isomorphic to M (r−1,1). This gives

the formula

M (r−1,1) ∼= FPV (H)⊕ k

Since n is odd and H is a 2-subgroup of Sn it follows that r is odd, so by Corollary 2.1.7 we get

M (r−1,1) = D(r−1,1) ⊕ k ∼= FPV (H)⊕ k and cancellation gives FPV (H) ∼= D(r−1,1).

The following well-known result can be proved for all n using the Nakayama Conjecture, or by

looking at powers of 2 dividing the dimension of D(n−1,1) and n!, but it is also a consequence of our

previous theorem when n is odd.
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Corollary 4.2.2. Let k be the field of two elements and let n be odd. The module D(n−1,1) is a

projective kSn-module if and only if n = 3.

Proof. We know that D(2,1) is the two dimensional simple projective module of kS3 (see [1]). If

n ≥ 5, then the 2-subgroup H generated by the transposition (1,2) has at least 3 fixed points, so by

the theorem we have FPD(n−1,1)(H) 6= 0, so D(n−1,1) cannot be projective (see Example 2.3.6).

Since any 2-subgroup of Sn is conjugate to an H as described in Theorem 4.2.1, the condition that

the fixed points be exactly {1, . . . , r} is not necessary.

Corollary 4.2.3. With the notation from Theorem 4.2.1, FPD(n−1,1)(H) is either 0 or a simple

N/H-module. It is projective if and only if H is conjugate to a Sylow 2-subgroup of Sn−3.

Proof. The Brauer quotient is simple because D(r−1,1) is a simple Sr-module, and it is projective if

and only if the kernel of the map N/H−→Sr has no elements of order 2 and D(r−1,1) is a projective

Sr-module (since N/H ∼=
(
NSn−r (H)/H

)
× Sr). We know that NSn−r (H)/H has even order if and

only if H is not a Sylow 2-subgroup of Sn−r by a theorem about normalizers in p-groups, and that

D(r−1,1) is projective precisely when r = 3.

4.3 Brauer quotient of D(n−2,2), n ≡ 3 (mod 4)

We describe all the subgroups H of Sn such that the Brauer quotient of D(n−2,2) is both simple and

projective as a module for NSn(H)/H.

In this section n is congruent to 3 modulo 4 and n ≥ 7, k is the field of two elements, V is the simple

module D(n−2,2), H is a 2-subgroup of Sn whose fixed points on {1, . . . , n} are precisely {p1, . . . , pr},
N = NSn(H), A is the family of H-orbits on {1, . . . , n} of size 2, B and C are the families of subsets

of size 2 and 1 respectively of the fixed points of H on {1, . . . , n}. As usual, if X is a set where a

group acts, kX denotes the permutation module on X. Recall that N/H ∼=
(
NSn−r (H)/H

)
× Sr.

Proposition 4.3.1. We have that

FPV (H)⊕ kC ∼= kA⊕ kB

as N/H-modules.

Proof. We compute FPM(n−2,2)(H) in two different ways. From

M (n−2,2) = D(n−2,2) ⊕M (n−1,1)

we get

FPM(n−2,2)(H) ∼= FPV (H)⊕ FPM(n−1,1)(H) ∼= FPV (H)⊕ kC

On the other hand, using the fact that M (n−2,2) is an H-permutation module we get that

FPM(n−2,2)(H) ∼= kA ⊕ kB, since the fixed points of H acting on the subsets of {1, . . . , n} of

size 2 are made up of subsets fixed pointwise by H, and subsets forming a single H-orbit of size

2.
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This is not an explicit description of FPV (H), but it is enough to determine when the Brauer

quotient is a simple projective module.

Corollary 4.3.2. If r 6= 1 then FPV (H) is not a simple and projective k[N/H]-module. If r = 1,

then FPV (H) is a direct summand of kA of codimension 1 and the number of orbits of size 2 is

odd.

Proof. If r ≥ 5 then kB ∼= M (r−2,2), kC ∼= M (r−1,1), and by Lemma 2.1.8, if FPV (H) were simple

and projective (counting composition factors) we would have FPV (H) ∼= D(n−2,2) as N/H-modules,

and D(r−2,2) (or rather, k ⊗k D(n−2,2)) is not a simple projective k[N/H]-module. If r = 3 then

kB ∼= kC (subsets of size 2 and 1 will give isomorphic families), so FPV (H) is isomorphic to the

permutation module kA, which can be simple only if it is one-dimensional, which implies that H

has exactly 3 fixed points and one orbit of size 2 on {1, . . . , n}, so n is congruent to 1 modulo 4,

contradicting our hypothesis. If r = 1, then kC = k, kB = 0, and the number of orbits of size 2

must be odd because n ≡ 3( mod 4).

Remark 4.3.3. For the remainder of this section we shall assume that r = 1 and that H has at least

3 orbits of size 2 (if it had only 1 then kA would have dimension 1 and FPV (H) = 0).

We must determine what the action of N/H on kA is, that is, how N/H acts on the orbits of size

2 of H on {1, . . . , n}. Without loss of generality, let {i, l+ i}li=1 be the orbits of H of size 2 (where

l is the number of such orbits).

Lemma 4.3.4. If kA has a projective non-trivial summand (as a module for N/H) then H contains

the transpositions (i, l + i), 1 ≤ i ≤ l and a Sylow 2-subgroup of S{2l+1,...,n}.

Proof. If (i, l+ i) 6∈ H, then it represents an element of order 2 in N/H that acts trivially on the set

A, hence on the module kA, hence on its direct summands, which cannot be projective. A similar

argument proves that H must contain a Sylow 2-subgroup of S{2l+1,...,n}.

Corollary 4.3.5. If kA has a projective non-trivial summand (as a module for N/H), then H

is the internal direct product of the elementary abelian subgroup generated by the transpositions

(i, l + i) 1 ≤ i ≤ l and a Sylow 2-subgroup of S{2l+1,...,n}.

Proof. The lemma proves one containment. The other follows from the fact that H is a 2-subgroup

and it is therefore contained in the direct product of some Sylow 2-subgroups of the symmetric

groups on its orbits, which in this case are generated by the elements mentioned.

Proposition 4.3.6. Let m be a natural number, E the subgroup of Sm generated by the disjoint

transpositions {(ai, bi) | 1 ≤ i ≤ l}, and X the complement of the previous 2l points. Let Λ be a

subgroup of SX , put Q = E · Λ and let N = NSm(Q). Then the action of N on the set of l pairs

{ai, bi} induces a surjective morphism φ : N−→Sl whose kernel is E ·NSX (Λ).

Proof. The morphism φ induced by the action of N on the l pairs is well defined because N sends

Q-orbits to Q-orbits. In order to prove that φ is surjective, it suffices to cover all transpositions in
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Sl. If {a, b} and {c, d} are two of the l pairs, then (a, c)(b, d) is an element in N whose action on

the pairs is that of the transposition we wanted. Now let us determine the kernel of φ. We have

that that E ·NSX (Λ) is in the kernel of φ. Now let σ be in the kernel of φ. Then σ preserves the l

pairs, so σ = εδ with ε ∈ E and δ ∈ SX , so δ = ε−1σ ∈ N ∩ SX ⊂ NSX (Λ).

Corollary 4.3.7. We have that

N/H ∼= Sl

where l is the number of H-orbits of size 2.

Proof. By Proposition 4.3.6, φ : N−→Sl is surjective, and since NSX (P ) = P where P is a Sylow

2-subgroup of S{2l+1,...,n} contained in H, then the kernel of φ is H.

Corollary 4.3.8. Let l be the number of H-orbits of size 2. Then kA ∼= M (l−1,1) and FPV (H) ∼=
D(l−1,1) as Sl-modules.

Proof. The morphism φ : N−→Sl that induces the isomorphism between N/H and Sl takes the

permutation module of H-orbits of size 2 (i.e. kA) to the permutation module arising from the

set {1, . . . , l}, (i.e., M (l−1,1)). We also know that l is odd, so M (l−1,1) ∼= D(l−1,1) ⊕ k. Now apply

Corollary 4.3.2.

Corollary 4.3.9. We have that FPV (H) is simple and projective if and only if H is conjugate to a

subgroup of the form E ·P where E is generated by (1, 2), (3, 4), (5, 6), and P is a Sylow 2-subgroup

of S{7,...,n}. In this case, N/H ∼= S3 and FPV (H) ∼= D(2,1).

Proof. The module D(l−1,1) is Sl-projective if and only if l = 3. This and Corollary 4.3.5 deter-

mine the structure of H. In this case, from Corollary 4.3.7 it follows that N/H ∼= S3, and by

Corollary 4.3.8 we have that FPV (H) ∼= D(2,1) is simple and projective.

4.4 FP S(n−1,1) and FPD(n−1,1), n ≡ 2 (mod 4)

We describe the subgroups H of Sn (when n is congruent to 2 modulo 4) with respect to which

the Brauer quotient of S(n−1,1) is simple and projective as a module for NSn(H)/H, and similarly

for D(n−1,1). Let k be the field with two elements, H a 2-subgroup of Sn, N the normalizer of H

in Sn, K a maximal subgroup of H, V the Specht module S(n−1,1) and W the irreducible module

D(n−1,1). From now on we shall use the characterization of V and W as families of subsets under

symmetric differences (see Lemma 2.1.6). Note that V/X ∼= W where X be the vector subspace of

V spanned by the vector {1, . . . , n}.
In order to obtain the Brauer quotient, first we need to describe the fixed points V H and WH .

Proposition 4.4.1. The fixed points V H of H on V are the H-invariant subsets of {1, . . . , n} of

even cardinality. The fixed points WH of H on W are the classes of elements in V H modulo X.
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Proof. The statement for V H follows from the definition of fixed points and the characterization of

V . Now let A be a subset representing an element in W that is fixed by all the elements in H, and

let h ∈ H. Then h(A) is either A or its complement. Suppose h(A) = Ac. Then both subsets have

the same cardinality, namely n/2, which is an odd number (because n is congruent to 2 modulo 4),

and this contradicts the fact that A has even cardinality (since it is in V ). Thus h(A) = A, which

proves the assertion about the fixed points of H on W .

Large orbits (of size 4 or larger) are in the image of relative traces from proper subgroups, so they

will not contribute towards the Brauer quotient.

Proposition 4.4.2. Let Ω ∈ V H be an H-orbit whose size is divisible by 4. Then there is a maximal

subgroup K of H and Λ ∈ V K such that trHK(Λ) = Ω. If [Ω] and [Λ] are the corresponding classes

in WH and WK , then trHK([Λ]) = [Ω].

Proof. We have that Ω is isomorphic to an H-set of the form H/L where L is a subgroup whose

index in H is at least 4. Let K be any maximal subgroup of H containing L. Then Ω is a union of

two K-orbits of equal size, say Λ and hΛ, where h ∈ H but h 6∈ K. Since Ω has size divisible by 4,

we have that Λ has even size, so Λ ∈ V K . Furthermore, trHK(Λ) = Λ + hΛ = Λ4hΛ = Λ
∐
hΛ = Ω.

We also have trHK([Λ]) = [trHK(Λ)] = [Ω].

Remark 4.4.3. Since all H-orbits of size divisible by 4 are in the image of a relative trace map

from a proper subgroup, the Brauer quotient (of V and W ) with respect to H is a quotient of the

space spanned by (classes of) fixed points and orbits of size 2 of H. Now we proceed to determine

which of these orbits will also be in the image of a relative trace from a proper subgroup. Since

trHK ◦ trKL = trHL , it suffices to consider maximal subgroups of H.

Lemma 4.4.4. Let A be the set of K-fixed points that are not fixed by H, and let h be an element in

H that is not in K. Then h acts on A as a product of disjoint transpositions. These transpositions

are independent of the choice of h, and the pairs they determine are H-orbits of size 2.

Proof. We have that K is normal in H, so h permutes the K fixed points without fixing any of

them (otherwise that point would also be fixed by H), but h2 ∈ K, so h2 acts trivially on A, and

this implies that h acts on A as a product of disjoint transpositions. The rest follows from the fact

that K has index 2 in H, so any other representative is of the form hk with k ∈ K.

Definition 4.4.5. Let B and C be H-orbits. We say they are glued if for every h in H, h fixes B

pointwise if and only if h fixes C pointwise.

Lemma 4.4.6. Gluing is an equivalence relation in the set of all H-orbits of size 2.

Proof. This is immediate from the definition.

We also know that the normalizer of H sends glued orbits to glued orbits.
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Lemma 4.4.7. Let D, E be glued orbits of H, and let n ∈ N . Then nD, nE are also glued

H-orbits. In particular, N permutes the equivalence classes of orbits of H under gluing, and it

preserves the cardinality of each equivalence class.

Proof. Let h ∈ H, Then h fixes D pointwise if and only if hd = d for all d ∈ D, if and only if

nhn−1(nd) = nd for all d ∈ D, if and only if nhn−1 fixes nD pointwise. In other words, nhn−1

fixes nD pointwise if and only if h fixes D pointwise, if and only if h fixes E pointwise, if and only

if nhn−1 fixes nE pointwise, so nD and nE are glued nHn−1-orbits. Since n ∈ N , we have the

desired result.

Remark 4.4.8. The H-orbits of size 2 described in Lemma 4.4.4 are glued. Moreover, they form a

single equivalence class. The following result proves that this is always how these equivalence classes

arise.

Lemma 4.4.9. Let A be the union of an equivalence class of H-orbits of size 2 under gluing. Let

L be the pointwise stabilizer of A in H. Then L is maximal in H.

Proof. Let x be any element in H that is not in L. Then x must act on A as a product of disjoint

transpositions without fixed points. If y is another element in H that is not in L, then y also acts

as the same product of transpositions, so xy acts as the identity on those points, and it is in L.

This proves that L has index 2 in H.

Corollary 4.4.10. The maximal subgroups of H which have strictly more fixed points than H are

precisely the ones described in Lemma 4.4.9.

Proof. This follows from Lemmas 4.4.4 and 4.4.9.

Next we prove that the Brauer quotients of V and W cannot be simple and projective unless H

acts fixed-point freely on the set {1, . . . , n}.

Theorem 4.4.11. Assume that H has at least one fixed point on the set {1, . . . , n}, say a. Then

the images of the relative traces from proper subgroups of H are the subspace of V H generated by

all the orbits of H on {1, . . . , n} of even cardinality. The images of the relative traces in WH are

the classes of such orbits of even cardinality modulo X.

Proof. By Proposition 4.4.2, every orbit of H on {1, . . . , n} whose size is divisible by 4 will be in the

image of a relative trace from a proper subgroup. Let {α, β} be an H-orbit of size 2. Since we are

assuming that a is a fixed point of H, we must have α 6= a 6= β. Let L be the maximal subgroup of

H fixing α and β (see Lemma 4.4.9), and let h ∈ H, h 6∈ L, so by Lemma 4.4.4 hα = β. We have

that {a, α} ∈ V L, and trHL ({a, α}) = {a, α} + {a, β} = {α, β}. In W , we have that [{a, α}] ∈ WL

and trHL ([{a, α}]) = [{α, β}]. The other containment follows from the fact that if L is maximal in

H, Ω ∈ V H and x is a point fixed by H with x ∈ Ω, then x ∈ hΩ for every h ∈ H, so x 6∈ trHL (Ω),

and the image of a relative trace from a maximal subgroup cannot contain any points fixed by H.

If [Ω] ∈ WL with Ω ∈ V L then trHL ([Ω]) = [trHL (Ω)], so trHL (WL) consists of the classes of the

elements in trHL (V L).
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Corollary 4.4.12. Assume that the fixed points of H on {1, . . . , n} are precisely {1, . . . , r}. Then

FPV (H) ∼= S(r−1,1) and FPW (H) ∼= D(r−1,1), where N/H acts via the canonical quotient map

N/H−→Sr. In particular, neither FPV (H) nor FPW (H) is a simple projective module.

Proof. Note that r is even because n is even and H is a 2-group. The Brauer quotient FPV (H) is

the family of H-invariant subsets of {1, . . . , n} of even cardinality modulo the span of the orbits of H

of even cardinality. Let ϕ : V H−→M (r−1,1) be the morphism of kSr-modules sending a set Ω to the

set of fixed points of H in Ω (we are again using the description of M (r−1,1) given in terms of subsets

of {1, . . . , n} from Lemma 2.1.6). Then the kernel of ϕ consists of the H-invariant subsets of even

cardinality with no fixed points, which is the same as the vector subspace spanned by the H-orbits

of even cardinality, so FPV (H) ∼= ϕ(V H), and since an H-invariant subset of even cardinality

must have an even number of fixed points, we have ϕ(V H) = S(r−1,1). This in turn induces an

isomorphism between FPW (H) ∼= FPV (H)/ < [{1, . . . , n}] > and S(r−1,1)/ < ϕ({1, . . . , n}) >=

S(r−1,1)/ < {1, . . . , r} >= D(r−1,1). Since r is even, (r − 1, 1) cannot be a triangular partition, so

neither S(r−1,1) nor D(r−1,1) is a simple and projective module for kSr.

This means that if we want a simple projective Brauer quotient, we must only consider subgroups

H with no fixed points on {1, . . . , n}.

Theorem 4.4.13. Assume H has no fixed points. Then the images of the relative traces generate

the same module as the (classes of) orbits of size divisible by 4 together with the sums of pairs of

glued H-orbits of size 2 (i.e. subsets {a, b, c, d} where {a, b}, {c, d} are glued H-orbits of size 2).

Proof. By Proposition 4.4.2, any orbit whose size is divisible by 4 will be in the image of a relative

trace. Each element in V K is a K-invariant subset of {1, . . . , n}, and can be written as a disjoint

union of K-orbits. If Ω is a K-orbit with |Ω| ≥ 2 and h ∈ H, h 6∈ K, then trHK(Ω) = Ω+hΩ = Ω4hΩ.

Let w ∈ Ω, so Ω = Kw, and hΩ = hKw = hKh−1hw = K(hw) is another K-orbit of the same size,

so either hΩ = Ω (and Ω4hΩ = ∅) or Ω ∩ hΩ = ∅ (and Ω4hΩ is an H-orbit of size 2|Ω|). We see

that the only possible orbits of size 2 in the images of the relative traces are the images of these

maps on subsets of the K-fixed points of maximal subgroups K. The only possible fixed points for

K will not be fixed by H, so they come from glued H-orbits of size 2 (see Remark 4.4.8). Recall

that the subsets of even cardinality are generated by all possible pairs. A pair of fixed points under

K is either an H-orbit, or they lie in distinct H-orbits which are glued. Let {a, b} and {c, d} be

glued H-orbits, and let K be their corresponding maximal subgroup. If they are different orbits,

then trHK({a, c}) = {a, c, b, d}, but using the same orbit gives trHK({a, b}) = 0, so the 2-orbits in the

image of this relative trace are the sums of pairs of different glued H-orbits of size 2.

Now we know that the Brauer quotients depend on the glued orbits of size 2. We use this to give

another description of the Brauer quotients in terms of certain subspaces of the fixed points.

Lemma 4.4.14. Assume that H has no fixed points on {1, . . . , n}. Recall that X denotes the

subspace of V generated by the vector {1, . . . , n}, so X is also a subspace of V H . Let Y be the

subspace of V H spanned by the H-orbits of size 2, and let Z be the subspace of Y spanned by all
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sums of pairs of glued H-orbits of size 2. Let Λ be the vector subspace of V H spanned by all the

H-orbits of size greater than or equal to 4, and let w be the sum of all the orbits of size 2. We have

that:

(i) The dimension of Y equals the number of H-orbits of size 2.

(ii) The codimension of Z in Y equals the number of equivalence classes of orbits of size 2 under

gluing.

(iii) V H = Y ⊕ Λ

(iv) WH = V H/X = (Y ⊕ Λ)/X

(v)
∑
trHK(V K) = Z ⊕ Λ

(vi)
∑
trHK(WK) = (Z + Λ +X)/X

(vii) FPV (H) ∼= Y/Z as k[N/H]-modules.

(viii) FPW (H) ∼= Y/(Z+ < w >) as k[N/H]-modules.

Proof. (i) is immediate, and (ii) follows from the fact that if v1, . . . , vt is a basis of a vector space, the

subspace generated by all the sums vi + vj with i 6= j has codimension 1. (iii) follows from the fact

that an H-invariant subset of {1, . . . , n} can be written uniquely as a disjoint union of orbits, and (iv)

is the description of WH from Proposition 4.4.1. (v) and (vi) are given by Theorem 4.4.13 (notice

that we do not know whether {1, . . . , n} ∈ Z ⊕Λ or not, so the sum Z + Λ +X may not be direct).

We have FPV (H) = V H/
∑
trHK(V K) ∼= (Y ⊕Λ)/(Z⊕Λ) ∼= Y/Z, which proves (vii). We use one of

the isomorphism theorems to get FPW (H) = WH/
∑H
K(WK) ∼= [(Y ⊕ Λ)/X] / [(Z + Λ +X)/X] ∼=

(Y ⊕Λ)/(Z+Λ+X). Finally, consider the composition of morphisms of k[N/H]-modules Y−→Y ⊕
Λ−→(Y ⊕ Λ)/(Z + Λ +X). Note that this is surjective, and that its kernel is Y ∩ (Z + Λ +X) =

Z+ < w >, so we have (viii).

We proceed to study the modules V and W separately.

Theorem 4.4.15. Assume H has no fixed points. Let A1, . . . , Ar be the equivalence classes of

2-orbits under gluing. Then N permutes the Ai, and the Brauer quotient of V with respect to H is

isomorphic to the permutation module on A1, . . . , Ar.

Proof. We use the notation from Lemma 4.4.14. Let ϕ be the map from the permutation module

of the Ai into the Brauer quotient given by sending Ai to the class of any of its representatives.

This map is well defined, because the difference of two representatives is in Z. It is also surjective,

because any orbit of size 2 lies in one of the Ai. By Lemma 4.4.14 (ii) and (vii), the dimension of

FPV (H) is r, so the domain and image of ϕ have the same dimension, so ϕ is an isomorphism.

Theorem 4.4.16. We have that FPV (H) is simple and projective if and only if H is a Sylow

2-subgroup of Sn. In this case, N = H, and FPV (H) is the 1-dimensional trivial module.

Proof. If H is a Sylow 2-subgroup then it has no fixed points and it has a unique orbit of size

2 (because n ≡ 2( mod 4), and we have the desired result. Now suppose H is a 2-subgroup with

simple projective Brauer quotient. By Corollary 4.4.12 H cannot have any fixed points, and by
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Theorem 4.4.15 the Brauer quotient is a permutation module, which is simple only when 1 dimen-

sional trivial, and this is in turn projective only for a group of odd order, so H must be a Sylow

2-subgroup of Sn.

Now for W = D(n−1,1).

Theorem 4.4.17. Assume H has no fixed points. Let A1, . . . , Ar be the equivalence classes of

2-orbits under gluing. Then N permutes the Ai, and the Brauer quotient FPW (H) is isomorphic

to the quotient of the permutation module on A1, . . . , Ar by the submodule spanned by the element∑r
i=1 |Ai|Ai.

Proof. Once again we use the notation from Lemma 4.4.14. Let ϕ be the map from the permutation

module of the Ai into the module Y/(Z+ < w >) given by sending Ai to the class of any of its

representatives. This map is well defined, because the difference of two representatives is in Z. It

is also surjective, because any orbit of size 2 lies in one of the Ai. We can also see that the element

f :=
∑r
i=1 |Ai|Ai is in the kernel of ϕ because ϕ(f) =

∑r
i=1 |Ai|ϕ(Ai) = w. Note that a sum of

2-orbits is in Z if and only if it has an even number of elements in each Ai, so w ∈ Z if and only if

f = 0. By Lemma 4.4.14 (ii) and (viii), the dimension of FPW (H) is either r if w ∈ Z, or r − 1 if

w 6∈ Z. There are two cases:

Case 1: w ∈ Z. Then f = 0, the dimension of the Brauer quotient is r and ϕ is an isomorphism, so

its kernel is spanned by f and the result holds.

Case 2: w 6∈ Z. Then f 6= 0, the dimension of the Brauer quotient is r − 1 and the kernel of ϕ has

dimension 1, so it is spanned by f , and the result holds.

Theorem 4.4.18. We have that FPW (H) is simple and projective if and only if H is conjugate to

a subgroup of the form < (1, 2), (3, 4), (5, 6) > ×P , where P is a Sylow 2-subgroup of S{7,...,n}. In

this case, N/H is isomorphic to S3, and FPW (H) is the 2-dimensional projective.

Proof. It is immediate from Theorem 4.4.17 that the Brauer quotient of W with respect to the

subgroup H =< (1, 2), (3, 4), (5, 6) > ×P is isomorphic to M (2,1)/k ∼= D(2,1) and that N/H ∼= S3.

Suppose, conversely, that FPW (H) is simple and projective. By Corollary 4.4.12, H cannot have

any fixed points, so the conditions for Theorem 4.4.17 are satisfied. We also claim that no two

different H-orbits of size 2 can be glued (if {a, b} is glued to {c, d}, then (a, c)(b, d) is in N but not

in H, has order 2, and acts trivially on FPW (H), which cannot be N/H-projective). The subgroup

H must be contained in a subgroup of the form E · P where E is the subgroup generated by the

transpositions (ai, bi) for all 2-orbits of H, and P is a Sylow 2-subgroup of the symmetric group

on the remaining points. Note that E · P is a 2-subgroup containing H that acts trivially on the

Brauer quotient. If H were properly contained in E · P , then there would be an element in N/H

of order 2 acting trivially on a projective module, so H = E · P . Let A1, . . . , Ar be the H-orbits

of size 2. The action of N on the Ai induces a surjective morphism of groups to Sr whose kernel

is H (see Proposition 4.3.6). Then the quotient N/H is isomorphic to Sr where r is the number of

H-orbits of size 2, and the isomorphism is given by the action of N on such orbits. Furthermore,
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FPW (H) is, as an N/H-module, isomorphic to the quotient of the permutation module k{1, . . . , r}
modulo the sum of the basic elements, and this module is D(r−1,1). This is kSr-projective if and

only if r = 3, so H and FPW (H) have the desired form.
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Chapter 5

Triangular partitions and weights

In this chapter we study what happens when triangular partitions are appended to other partitions

to create weights. Unless otherwise stated, k is the field of two elements, t is a triangular number,

µ the triangular partition of t, n a natural number, and λ the partition obtained by adjoining n

nodes to the first row of µ. Section 4.1 will be very useful throughout this chapter.

5.1 Simple projective modules

First we recall the fundamental property of triangular partitions. For a proof of this result, see [10].

Lemma 5.1.1. We have that Sµ = Dµ is simple and projective as a kSt-module. Furthermore,

kSn has a simple projective module if and only if n is a triangular number, and in this case there is

only one simple projective module.

Combining Lemma 5.1.1 and what we know from Section 4.1 we have the following result.

Corollary 5.1.2. Let H be a weight subgroup of Sn, with no fixed points on {1, . . . , n}. For each

q > n, regard Sn as the subgroup of Sq that fixes the points x > n. Then H is a weight subgroup of

Sq if and only if q − n is a triangular number. In this case, the number of isomorphism classes of

simple projective NSn(H)/H-modules equals the number of isomorphism classes of simple projective

NSq (H)/H-modules.

Proof. The group NSq (H)/H is isomorphic to (NSn(H)/H)× Sq−n, which has a simple projective

module if and only if q − n is a triangular number. The last part follows from the fact that the

simple projective modules for a product of groups are the tensor products of their respective simple

projective modules.

Remark 5.1.3. From now on, we shall concentrate on the trivial partition (one row of size n) and

the trivial weight (P, k), where P is a Sylow 2-subgroup of Sn and k is the one dimensional trivial

module. We shall thus analyze what happens when a triangular partition is appended to the trivial

partition of size n.
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Lemma 5.1.4. Let ν be any partition, with rows ν1 ≥ ν2 ≥ · · · ≥ νs. Remove n symbols and push

up, obtaining a composition, ν̂ (the rows of ν̂ need not be in descending order). Rearrange the rows

of ν̂ to get a partition ν̃. Then ν̃ “fits inside” ν, that is, ν̃i ≤ νi for all i.

Proof. Induction on n. Let n = 1, and let j be the index of the row where a node is deleted.

Then the j-th row of the composition ν̂ is νj − 1, but all the other rows coincide with those of

ν. Let a be the smallest number such that νj > νa (possible, since νj > 0). Then we have

νj = νj+1 = · · · = νa−1 > νa, so νj − 1 ≥ νa, and rearranging the rows of ν̂ in decreasing order we

get that ν̃i = νi if i 6= a− 1, and ν̃a−1 = νa−1 − 1. Thus ν̃ fits inside ν.

Now assume the result holds for n symbols. Removing n symbols from ν gives a partition ψ that

fits inside ν, and removing one symbol from ψ gives a partition φ that fits inside ψ, so φ fits inside

ν as well.

Remark 5.1.5. When we remove one node, it suffices to take it from a row that is strictly larger

than the next (no shifting will occur). Note also that both ν̂ and ν̃ depend on the choice of the

rows from which the n symbols are removed.

Lemma 5.1.6. Let λ̃ be any partition obtained from λ by removing n nodes as above. Then λ̃

dominates µ, and λ̃ = µ if and only if the n nodes were removed from the first row.

Proof. To show
∑r
i=1 λ̃i ≥

∑r
i=1 µi for all r ≥ 1, we show that

∑
i>r λ̃i ≤

∑
i>r µi, and this follows

from the previous lemma. The only way to obtain µ is to remove n nodes from the first row.

Proposition 5.1.7. The module Mλ restricted to St is a direct sum of Mν , where each ν is obtained

from λ as λ̃, removing the nodes with the symbols t+ 1, . . . , t+ n from each λ-tabloid. The module

Mµ occurs precisely once.

Proof. The module Mλ is the permutation module with λ-tabloids as a basis. Restricting this to

St we get again a permutation module. Let α be a λ-tabloid. We claim that the orbit of α under

St gives rise to a permutation module M λ̃, where λ̃ is obtained by removing n nodes from λ as

described in Lemma 5.1.4, the n nodes being deleted from the rows where the numbers t+1, . . . , t+n

are placed in the λ-tabloid α. These two kSt-permutation modules are isomorphic because their

underlying St-sets are isomorphic, which in turn follows from the fact that the stabilizer in St of

α coincides with the stabilizer of the λ̃-tabloid obtained from α by deleting the n nodes from the

rows where the symbols t+ 1, . . . , t+ n are. The only time that we get Mµ is when we remove all

n nodes from the first row, which can be done in exactly one way, so Mµ appears exactly once as a

summand (α is a tabloid, so the order of the symbols within each row is irrelevant).

Corollary 5.1.8. The module Mλ restricted to St has exactly one composition factor isomorphic

to Dµ.

Proof. It follows from the previous proposition and the fact (see [9]) that the composition factors of

Mν are all of the form Dα, where α dominates ν (and, when ν is 2-regular, exactly one composition

factor is isomorphic to Dν).
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We shall prove that as a kSt-module, FPDλ(H) has Dµ as a summand for any subgroup H of Sn.

We start with the fixed points.

Proposition 5.1.9. Let ϕ = ϕt,n : Mµ−→Mλ be the map given by adjoining the numbers t +

1, t + 2, . . . , t + n to the first row of each µ-tabloid (and extending by linearity). Then ϕ is a

monomorphism of kSt-modules. Moreover, ϕ sends Sµ into Sλ, and if π : Sλ−→Dλ is the natural

quotient map, then π ◦ ϕ sends Sµ isomorphically into a summand (as a kSt-module) of the fixed

points of Dλ under the subgroup S{t+1,t+2,...,t+n}. In particular, if K is any subgroup of Sn, there

is a monomorphism of St- modules Dµ−→(Dλ)K .

Proof. We see that ϕ is a monomorphism of St-modules. Let α be a µ-tableau, and let β be the

tableau obtained from α by adjoining the numbers t+ 1, t+ 2, . . . , t+ n to the first row. Then the

column stabilizer in St of α is the same as the column stabilizer of β in St+n, so the polytabloid

generated by α will be sent by ϕ to the polytabloid generated by β. Since this holds for any tableau

α, we have that ϕ sends Sµ into Sλ. The map ϕ also preserves the standard bilinear form on Mµ, and

since Sµ = Dµ, we have that ϕ(Sµ)∩ (Sλ)⊥ is contained in ϕ(Sµ)∩ (ϕ(Sµ))⊥ = ϕ(Sµ∩ (Sµ)⊥) = 0,

so the composition π ◦ ϕ is injective. The rest follows from the fact that Sµ is St-projective.

Corollary 5.1.10. The module Sλ restricted to St has exactly one composition factor isomorphic

to Dµ, and so do Dλ and (Dλ)K for any subgroup K of Sn.

Proof. The module Sλ ↓St is a submodule of Mλ ↓St , so it has at most one Dµ as composition

factor (see Corollary 5.1.8). But Dλ ↓St is a quotient module of Sλ ↓St , and (Dλ)K is a submodule

of Dλ ↓St , so these also have at most one Dµ as a composition factor. Finally, Proposition 5.1.9

states that (Dλ)K has at least one composition factor isomorphic to Dµ, hence so do Dλ ↓St and

Sλ ↓St .

Corollary 5.1.11. Let H be a 2-subgroup of Sn, and K a proper subgroup of H. Let ψ :

Dµ−→(Dλ)K be the monomorphism of kSt-modules defined in Proposition 5.1.9. Then trHK ◦ψ = 0.

Proof. We have that ψ(Dµ) is contained in (Dλ)H , so trHK(ψ(v)) = [H : K]ψ(v) = 0.

We analyze what the relative traces do to this copy of Dµ in the fixed points (Dλ)H .

Lemma 5.1.12. If K ≤ H ≤ Sn then

trHK : (Dλ)K−→(Dλ)H

is a morphism of kSt-modules, where St is regarded as a subgroup of the quotient NSt+n(H)/H.

Proof. Let y ∈ St. Then for any x ∈ H we have yx = xy, so ytrHK(v) = y
∑
xiv =

∑
yxiv =∑

xi(yv) = trHK(yv), where yv ∈ (Dλ)K .

Corollary 5.1.13. If K ≤ H ≤ Sn then Im(trHK) is an St-submodule of (Dλ)H .

Lemma 5.1.14. Let V1, . . . , Vr be a family of submodules of a module V . Then
∑
Vi is a quotient

module of ⊕Vi.
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Proof. The map (v1, . . . , vs) 7→ v1 + · · ·+ vn is surjective.

Corollary 5.1.15. Let H be a 2-subgroup of Sn, and K a proper subgroup of H. Then

(i) The kernel of trHK : (Dλ)K−→(Dλ)H has Dµ as a composition factor.

(ii) The image of trHK does not have Dµ as a composition factor.

(iii) No composition factor of
∑
K<H Im(trHK) is isomorphic to Dµ.

(iv) As a kSt-module (and not necessarily as a k[NSn(H)/H]-module), the Brauer quotient

FPDλ(H) has Dµ as a composition factor of multiplicity one.

Proof. (i) follows from Corollary 5.1.11; (ii) follows from Corollary 5.1.10 and (i); (iii) follows from

(ii) and a Lemma 5.1.14; (iv) follows from (iii) and Corollary 5.1.10.

Now we prove that there are no simple projective kSd-modules arising from a triangular number d

greater than t.

Lemma 5.1.16. Let λ be a partition of m, µ a 2-regular partition of t, t < m. If Dµ is a composition

factor of Mλ ↓St , then there exists a partition ν of t such that ν fits inside λ and µ dominates ν.

Proof. By Proposition 5.1.7, Mλ ↓St is a direct sum of Mν , where each ν fits inside α. If one of the

Mν has Dµ as a composition factor, we know (see [9]) that µ dominates ν.

Lemma 5.1.17. Let t be a triangular number, µ the triangular partition of size t, λ the partition

obtained by adding n nodes to the first row of µ. Let ν be a subpartition of λ (so µi ≥ νi for all

i ≥ 2) and α a triangular partition with |α| = |ν| and that dominates ν. Then µ1 ≥ α1, and hence

|µ| ≥ |α|.

Proof. Suppose α1 > µ1. Then α is a larger triangle than µ, so there exists r such that αr > 0 = µr,

so |α| ≥
∑r
i=1 αi > α1 +

∑r
i=2 µi ≥ ν1 +

∑r
i=2 νi = |ν|, contradicting the fact that α and ν had the

same size.

Corollary 5.1.18. Let H be a Sylow 2-subgroup of Sn. Then NSn+t(H)/H ∼= St, and FPDλ(H)

has a simple projective summand of multiplicity one, given by Dµ. If K is a proper subgroup of H,

then FPDλ(K) contains no simple projective summands.

Proof. The first part follows from Corollary 5.1.15. Let r be the number of points in {1, . . . , n} that

K moves. We have that NSn+t(K) = Sn+t−r ×NSr (K), and NSn+t(K)/K ∼= Sn+t−r ×NSr (K)/K.

Suppose that FPDλ(K) has a simple projective summand. Then n+ t− r is a triangular number,

and its triangular partition α is such that Dα is a composition factor of Mλ ↓S|α| . By Lemma 5.1.16,

there exists a subpartition ν of λ such that |α| = |ν| and α dominates ν. By Lemma 5.1.17, |α| ≤ |µ|,
i.e. n+ t− r ≤ t, so n = r.

We have then that NSn+t(K) = St × NSn(K), so NSn+t(K)/K ∼= St × NSn(K)/K. A simple

projective module for the latter group must be of the form Dµ ⊗B, where B is a simple projective

NSn(K)/K-module and Dµ is the only simple projective St-module. If FPDλ(K) had such a

summand, then restricting to St the Brauer quotient would have a summand (Dµ ⊗ B) ↓St∼=
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(Dµ)dim(B), so Dµ would have multiplicity dim(B), and since Dµ appears only once, B must have

dimension 1. Thus B cannot be projective for NSn(K)/K if K is a proper subgroup of H since

then NSn(K)/K has order divisible by 2.
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Chapter 6

Stable partitions

This chapter is of a more combinatorial nature. Our main goal is to prove that many entries in

the table of partitions in Section 3.5 are uniquely determined if certain conditions are imposed. We

define the concept of a 2-stable partition, (very similar to James’ notion of alternating partition,

see [8]), and use it to describe the above-mentioned uniquely determined partitions.

6.1 2-stability

We remind the reader of some of the concepts we shall use. For a more detailed description see [10].

Definition 6.1.1. Let λ be a partition. A skew-hook is a connected part of the rim of λ which can be

removed to leave a proper diagram. The r-core of λ is the partition obtained by removing all possible

skew-hooks of size r from λ (this is a well-defined partition, that is, the order in which we remove

the skew-hooks does not matter). A brick is a skew-hook of size 2. Recall that if λ = (λ1, . . . , λt)

is a 2-regular partition, then its rows must be of different sizes, i.e. λ1 > λ2 > · · · > λt.

We define the main concept of this chapter.

Definition 6.1.2. Let λ be a partition. We call λ 2-stable if it has the same number of rows as its

2-core.

Proposition 6.1.3. Let λ = (λ1, λ2, . . . , λt) be a partition. The following are equivalent:

(i) λ is 2-stable.

(ii) λt ≡ 1( mod 2) and λi 6≡ λi+1( mod 2) for all i = 1, . . . , t− 1.

(iii) λi ≡ t− i+ 1( mod 2) for all i = 1, . . . , t.

(iv) λ is obtained from its 2-core by adjoining horizontal bricks to the non-empty rows of the core.

Proof. (i) implies (ii): If λt were even, then the t-th row would be a string of horizontal bricks, so

we could remove it and the 2-core would have at most t−1 rows. Thus λt must be odd. If λt−1 were

also odd, then we would be able to remove all nodes but one from λt, all nodes but one from its

neighbour and then remove a vertical brick, which means the 2-core would have at most t− 2 rows.
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Now assume that the parities of λt, λt−1, . . . , λi+1 alternate. We must show that λi 6≡ λi+1( mod 2).

Without loss of generality, we may assume that λt = 1, λt−1 = 2, . . . , λi+1 = t− i (by removing all

possible horizontal bricks from the bottom row λt and working our way up). Note that the 2-core of

λ must have t rows, so it must be the triangular partition (t, t−1, . . . , 1), and in particular, its i+ 1

row has size t − i. If λi had the same parity as λi+1, then we would be able to remove horizontal

bricks from λi until we have t− i nodes left, and then we would be able to remove a vertical brick,

so that the row i + 1 of the 2-core of λ would have at most t − i − 1 nodes, contradicting the fact

that it had exactly t− i nodes.

(ii) implies (iii): We have λt ≡ 1( mod 2), so (iii) holds when i = t. Now use induction going down

from i = t to i = 1.

(iii) implies (iv): Since λt ≡ 1( mod 2), we can remove horizontal bricks from the last row to leave

one node, then proceed to remove horizontal bricks from the previous row to leave two nodes, and

work our way up until we get the triangular partition (t, t− 1, . . . , 1), which is the 2-core of λ.

(iv) implies (i): If we remove the horizontal bricks that were adjoined we shall obtain the 2-core

of λ, so both partitions must have the same number of rows (no bricks were added to form new

rows).

Corollary 6.1.4. If λ is 2-stable, then it is also 2-regular.

Proof. Since λi 6≡ λi+1( mod 2), no two consecutive rows can have the same size.

Corollary 6.1.5. If λ = (λ1, λ2, . . . , λt) is 2-stable, then the partition given by (λ1 + 1, λ2 +

1, . . . , λt + 1, 1) is also 2-stable.

Proof. This follows from Proposition 6.1.3, part (ii).

Remark 6.1.6. Note that the rows of a 2-stable partition have the same parity as the rows of its

2-core. A possible way to measure how far a partition is from being 2-stable is to count the number

of its “mismatched rows”, that is, the rows that have a different parity from the corresponding

rows of the 2-core. The following lemma gives an estimate of how many of these rows an arbitrary

partition can have.

Lemma 6.1.7. Let µ = (µ1, µ2, . . . , µs) be a partition (not necessarily 2-regular) with 2-core γ =

(γ1, γ2, . . . , γk). Let Λ = {i | γi 6≡ µi( mod 2), 1 ≤ i ≤ k} be the set of “ mismatched” rows of µ.

Then s ≥ k + 2|Λ|.

Proof. We use induction on |µ|. If |µ| = 0 or 1 then µ is its own 2-core and Λ = ∅. Now assume

the result holds for all partitions of size smaller than |µ|. If µ is a 2-core, then once again Λ = ∅
and the result holds. If µ is not a 2-core, let ν be any partition obtained from µ by removing

a brick, so |ν| < |µ| and the 2-core of ν is also γ. Let s1 be the number of rows of ν, and

Λ1 = {i | γi 6≡ νi( mod 2), 1 ≤ i ≤ k} the set of mismatched rows of ν. By the induction hypothesis,

s1 ≥ k + 2|Λ1|. There are two cases:
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Case 1: We removed a horizontal brick to obtain ν from µ. Then Λ1 = Λ, so s ≥ s1 ≥ k + 2|Λ1| =
k + 2|Λ|.
Case 2: We removed a vertical brick to obtain ν from µ. Let i, i+ 1 be the rows where the vertical

brick was removed. Then νi = νi+1. If νi+1 > νi+2, then continue to remove all possible vertical

bricks from rows i, i+ 1 until rows i+ 1 and i+ 2 have the same size. If νi+2 > νi+3 then remove all

possible vertical bricks from rows i+ 1, i+ 2, and continue in this manner until you reach the last

two rows, s− 1, s (which could have been the original i, i+ 1), and simply remove them both (using

vertical bricks). Let α = (α1, . . . , αs−2) be the resulting partition. Notice that α and µ have the same

2-core, |α| < |µ| and α has exactly two fewer rows than µ. Let Λ2 = {i | γi 6= αi( mod 2), 1 ≤ i ≤ k}.
All vertical bricks removed from any of the first k rows kept the size of two consecutive rows equal,

so exactly one out of each such pair contributed to the set of mismatched rows, and the number of

mismatched rows remained the same. Similarly, no vertical bricks removed from any of the rows

k + 1 through s changed the size of the set of mismatched rows (because these rows do not appear

in the 2-core). The only time when the number of mismatched rows could have changed was while

removing vertical bricks from the rows k and k + 1, and this number cannot have been changed by

more than one unit (depending on whether the k-th row kept its mismatched status or not). This

means that ||Λ| − |Λ2|| ≤ 1, and since α satisfies the induction hypothesis, we have

s− 2 ≥ k + 2|Λ2| ≥ k + 2(|Λ| − 1),

and the result is valid for µ.

The following is our main result in this section.

Theorem 6.1.8. Let λ = (λ1, . . . , λt) be a 2-stable partition, and let µ = (µ1, µ2, . . . , µs) be a

2-regular partition containing λ. If |µ| = |λ| + t + 1 and the 2-core of µ is (t + 1, t, . . . , 1), then

µ = (λ1 + 1, λ2 + 1, . . . , λt + 1, 1), and µ is 2-stable.

Proof. Since λ is a subpartition of µ, it is possible to write µ = (λ1 +α1, . . . , λt +αt, αt+1, . . . , αs).

It suffices to show that αi ≥ 1 for all 1 ≤ i ≤ t + 1 since then the equality |µ| − |λ| = t + 1 forces

αi = 1 where 1 ≤ i ≤ t + 1 = s. Note that αt+1 ≥ 1 since the 2-core of µ has t + 1 rows. Let

Γ = {i | αi = 0, 1 ≤ i ≤ t}. We must show that Γ = ∅. Suppose |Γ| ≥ 1. Note that

t∑
i=1

αi =
∑

i∈{1,...,t}−Γ

αi ≥ t− |Γ|.

Since λ is 2-stable, by Proposition 6.1.3 (iii) it has no mismatched rows. However, the 2-core of µ

is the next triangle, and all the rows of the smaller triangle must change parity, so all the rows of

λ that kept their parity will be mismatched rows of µ, so Γ is a subset of the set Λ of mismatched

rows of µ. By Lemma 6.1.7 we have s ≥ (t+ 1) + 2|Λ| ≥ t+ 1 + |Γ|, so

s− t ≥ |Γ|+ 1
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Since µ is 2-regular, 1 ≤ αs < αs−1 < · · · < αt+1, so
∑s
i=t+1 αi ≥

∑s−t
i=1 i = (s−t)(s+1−t)

2 , and

t+ 1 =
s∑
i=1

αi =
s∑

i=t+1

αi +
∑

i∈{1,...,t}−Γ

αi ≥
(s− t)(s+ 1− t)

2
+ t− |Γ|

≥t+
(|Γ|+ 1)(|Γ|+ 2)

2
− |Γ| = t+

|Γ|2 + 3|Γ|+ 2
2

− |Γ|

=t+ 1 +
|Γ|2 + |Γ|

2
> t+ 1

which is a contradiction. It is now immediate that µ is 2-stable.

The significance of this last result is that it seems possible that to each weight subgroup we may

associate a sequence of partitions λ0, λ1, λ2, . . . as in the table in Section 3.5, so that

a) the 2-core of λi is the i-th triangle

b) |λi| = |λ0|+ ti, where ti =
∑i−1
j=0 j is the i-th triangular number

c) λi is contained in λi+1 for all i

By Theorem 6.1.8 we see that once some λi is 2-stable then so is every λj with j ≥ i, and furthermore

λj+1 is constructed from λj by adding one new node to each row, together with an extra node as a

new last row.
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Chapter 7

Epilogue

We have seen how Brauer quotients can be used to provide an explicit bijection between irreducibles

and weights for F2Sn, n ≤ 8. We have proved that there are infinitely many instances of simple pro-

jective Brauer quotients. We have appended triangular partitions to trivial partitions and obtained

Brauer quotients with exactly one simple projective summand. We have also studied 2-regular parti-

tions from a more combinatorial perspective, but relying on the facts provided by our computations

with Brauer quotients to guide the flow of our intuition.

In this final chapter we tie up a few loose ends. We give several counterexamples to show that the

conditions on the number n that we imposed in Chapter 4 are necessary. We present our attempts

at modifying the original algorithm to solve the problem for n = 9, explaining what worked and

what did not. We conclude with a series of possible directions for further research, including some

interesting conjectures.

7.1 Examples

These examples (taken from our tables in Section 3.4) show that the restrictions imposed on n that

we gave in Chapter 4 are necessary. In this section, we shall always work with the field of two

elements.

1. Let n = 4, λ = (3, 1). Then the subgroup H = E4 is such that the Brauer quotient of D(3,1)

with respect to E4 is simple and projective (see Table 3.3), but E4 is not conjugate to a Sylow

2-subgroup of S1 (that is, E4 is not trivial), contradicting the conclusion of Corollary 4.2.3.

The fact that n is even causes problems, because the group H may not have any fixed points

(as is the case here).

2. Let n = 9, λ = (7, 2). Then the Brauer quotient of D(7,2) is not projective for any weight

subgroup of S9 (see Table 3.8), contradicting the conclusion of Corollary 4.3.9. In this case

it is harder to understand what the problem is (other than the fact that n 6≡ 3( mod 4)) or

how to fix it, but this is no surprise; after all, D(7,2) is the irreducible for which the proposed
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algorithm failed.

3. Let n = 8, λ = (7, 1), H = E2oE4. Then the Brauer quotient ofD(7,1) with respect toH is both

simple and projective (see Table 3.7), and H is not of the form described in Theorem 4.4.18.

7.2 Modifications to the algorithm

We tried several variations on our original algorithm to provide an explicit bijection in the case

n = 9, where there should be a match between the weight given by the subgroup E2 o E4 and the

irreducible D(7,2) (their Brauer quotient is 0). In this section we present the modifications that

failed, explaining why they did not work. In the next section we shall discuss what we are currently

working on.

7.2.1 Using other modules instead of Dλ

We took Brauer quotients of other modules to try to establish a bijection. We wanted to get a

triangular matrix of dimensions with simple projective modules represented along the diagonal. We

also wanted this procedure to coincide with the bijection that we had established before, using the

Dλ.

The other possible modules that we can associate to a p-regular partition λ are Mλ, Y λ, and Sλ

where Y λ is a Young module (see [7]). All of them have failed to keep the previous bijection at

other places.

• Mλ and Y λ: Consider the match Q = E2 o E4 and λ = (7, 1). Since the Young module is a

direct summand of Mλ, it suffices to prove that the Brauer quotient of Mλ is 0. We have that

M (7,1) is a permutation module, so FPM(7,1)(E2 o E4) is the permutation module on the set

of (7, 1)-tabloids that are E2 o E4-stable. But our subgroup has no fixed points, so it does not

fix any (7, 1)-tabloids, so FPM(7,1)(E2 o E4) = 0.

• Sλ: This clashes with the previous bijection. For any value of n that is congruent to 2 modulo

4, Theorem 4.4.16 says that S(n−1,1) has a simple and projective Brauer quotient with respect

to the Sylow 2-subgroup of Sn. But our algorithm matches the Sylow 2-subgroup with the

trivial partition for all values of n, no exceptions.

7.3 Directions for further research

There are many things that can be done to continue our work, ranging from module-theoretical

questions to purely combinatorial problems. What follows is but a list of our preferences.
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7.3.1 Between fixed points and Brauer quotients

Conjecture 7.3.1. It is possible to establish the desired bijection using a quotient module of the

fixed points by the span of (possibly) fewer images of relative traces from proper subgroups.

The reason why our original algorithm failed was because the Brauer quotient was too small. In

the particular case when n = 9 and H = E2 oE4, we had that the fixed points of D(7,2) did contain

a simple projective summand, that is, a copy of the weight module we wanted. We claim that this

is not an isolated event, and provide the analytical evidence we have gathered so far. Notice that

the following results are true for all finite groups and all characteristics.

Definition 7.3.2. Let k be a field of characteristic p, G a finite group, (Q,S) a weight for G and

V a kG-module. We say that V contains (Q,S) if V Q has S as a direct summand (as NG(Q)/Q-

modules).

Proposition 7.3.3. The regular module kG contains all weights.

Proof. For any subgroup Q we have that kGQ is the permutation module on the cosets of Q in G,

which contains the regular module k(NG(Q)/Q).

Proposition 7.3.4. If V contains a weight (Q,S) and W is a submodule of V that does not contain

that weight, then V/W contains that weight.

Proof. We know that S is a composition factor of V Q but not of WQ, so it is a composition factor

of V Q/WQ, which in turn is a submodule of (V/W )Q.

Corollary 7.3.5. Let G be any finite group, k any field of characteristic p, (Q,S) a weight for G.

Then there exists a kG-simple module that contains (Q,S).

Proof. Choose a composition series of the regular kG-module, and go down the series using Propo-

sition 7.3.4 until you find a simple kG-module that contains the weight (Q,S).

On the other hand, the fixed points may be too large. For example, the weight (P, k), where P

is a Sylow p-subgroup and k is the trivial module, is contained in every irreducible module. But

something between the large fixed points and the small Brauer quotient might be what we need to

establish an explicit bijection between weights and irreducibles. The problem is to determine what

we should divide the fixed points by in order to get the simple projective module.

7.3.2 Triangular tables of dimensions

Conjecture 7.3.6. The tables of Brauer quotients can always be arranged in a triangular form,

with either 0’s or simple projective modules along the diagonal. Moreover, this will define an explicit

bijection between weights and simple modules.

The tables of dimensions of Brauer quotients that we have obtained can always be arranged in a

triangular form by permuting its rows and columns, that is, by re-arranging the order of the weight
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subgroups and the partitions. Moreover, the diagonal entries in our tables are all simple projective

modules, except for one 0. For every value of n that admits such a triangular table, and provided

that there are not too many 0’s along the diagonal, we would obtain an explicit bijection between

weights for that symmetric group and its irreducibles. It might be the case that the existence of a

0 along the diagonal would tell us something special about that symmetric group, and perhaps it is

possible to determine which n’s will have null diagonal entries. After all, our results about Brauer

quotients being simple and projective rely heavily on n having a certain congruence class. The first

step in this direction would be to prove that the Brauer quotient of any non-trivial irreducible of

Sn with respect to the Sylow 2-subgroup is 0; in other words, that the first row of the table has a

1 followed by 0’s.

It is possible to prove that the Brauer quotient (with respect to the Sylow 2-subgroup) of an

irreducible that does not lie in the principal block is 0, but we have not been able to prove that

non-trivial irreducibles in the principal block also have 0 Brauer quotients with respect to the Sylow

2-subgroup.

7.3.3 Appending triangular partitions

Conjecture 7.3.7. Let Q be a weight subgroup of Sn, where Q has no fixed points on {1, . . . , n},
and let λ be a partition of m such that FPDλ(Q) is simple and projective. Then the 2-core of λ has

size m− n.

In the case of the trivial partitions, it is easy to see how to append every triangular partition to it

(just enlarge the first row of the triangle). But even in this relatively simple case we have not been

able to prove that the Brauer quotient is precisely the simple projective module, only that it has

it as a summand. The above conjecture is formulated from a different perspective: given that the

Brauer quotient FPDλ(Q) is simple and projective, what can we say about the partition λ?

7.3.4 Combinatorial implications

Conjecture 7.3.8. It is possible to arrange all 2-regular partitions in an infinite table satisfying

the following conditions:

- Along every row, each partition is contained in the next one.

- The 2-core of every partition along the i-th column is the i-th triangular partition (where ∅ is

the first triangular partition).

- The difference in size from the first partition and the i-th one on any given row is the i-th

triangular number.

A direct consequence of Alperin’s Conjecture (and also of other more elementary results) is that

the number of 2-regular partitions of n with empty 2-core equals the number of 2-regular partitions

of n + t with 2-core of size t for any triangular number t. No explicit bijection is known, but our
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table of partitions indicates that (for small values of n) it is possible to define a bijection with the

property that corresponding partitions are comparable (that is, the rows of one are greater than

or equal to the corresponding rows of the other). If such a statement were true, our results from

Chapter 6 prove that larger partitions assigned to 2-stable partitions are uniquely determined (there

is only one way to “grow” out of a 2-stable partition), and it would only be a matter of a finite

number of steps to go from a partition with empty 2-core to a 2-stable partition.

7.3.5 Other fields and other primes

We have worked mostly with the prime 2 and the field of order 2, but some of our results hold in

greater generality. Other results will have to be modified for them to work in other characteristics

or with other fields of characteristic 2, and concepts such as p-stable partitions will have to be

carefully redefined. Most of our software can be used independently of the finite field, but it will

be necessary to create new libraries of weight subgroups and irreducibles. It is worth noticing that

in the case when p > 2, the sign representation is non-trivial and irreducible, but its restriction

to the alternating subgroup is trivial, and so is its restriction to any p-subgroup. Therefore it has

a non-zero Brauer quotient with respect to all p-subgroups of Sn, including the Sylow p-subgroup

(compare this to Section 7.3.2).
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Appendix

We describe the most important computer subroutines that we created. Before we discuss the

subroutines, we would like to say more about the way that group representations are handled using

GAP [6]. We defined a data structure in GAP that corresponds to the notion of representation.

It consists of a record whose fields are: the group represented, a list of matrices (the images of

the list of generators of the group under the representation), the field used, the dimension of the

representation, a boolean variable (which indicates it is indeed a representation) and some of the

operations which can be performed on representations.

An example of an irreducible representation for S3 is shown in the following GAP session:

gap> V:=ModularIrreducible([1,2],2);

Representation( Group( (1,2), (1,2,3) ), Images

[ [ 1, 1 ],

[ 0, 1 ] ]

[ [ 1, 1 ],

[ 1, 0 ] ]

)

gap> RecFields(V);

[ "group", "genimages", "field", "dimension",

"isRepresentation", "operations" ]

gap> V.group;

Group( (1,2), (1,2,3) )

gap> V.genimages;

[ [ [ Z(2)^0, Z(2)^0 ], [ 0*Z(2), Z(2)^0 ] ],

[ [ Z(2)^0, Z(2)^0 ], [ Z(2)^0, 0*Z(2) ] ] ]

gap> V.field;

GF(2)

gap> V.dimension;

2

gap> V.isRepresentation;

true

48



gap> V.operations;

rec(

FixedPoints := function ( rep ) ... end,

FixedQuotient := function ( rep ) ... end,

SubFixedQuotient := function ( rep, u ) ... end,

Dual := function ( rep ) ... end,

TensorProduct := function ( g, h ) ... end,

Maps := function ( g, h ) ... end,

SubmoduleRep := function ( rep, v ) ... end,

QuotientRep := function ( rep, v ) ... end,

SumOfImages := function ( g, h ) ... end,

SumOfImagesFromDual := function ( g, h ) ... end,

Spin := function ( rep, v ) ... end,

CoSpin := function ( rep, v ) ... end,

BrauerQuotient := function ( rep ) ... end,

Print := function ( M ) ... end )

There are more functions than the above, but they have not yet been incorporated to the “opera-

tions” extension. Here we list only the functions that are in some way related to our present work.

We use the following conventions: G denotes a group, H a subgroup of G, k a field of characteristic

p, L a list (of vectors, group elements, etc), P is a p-group (possibly a p-subgroup of G), V is a

kG-representation.

BrauerQuotient(V ) computes the dimension of the Brauer quotient of V . This routine was used

to create the tables of dimensions, since it is much faster than its more complete counterpart,

BrauerRep.

BrauerRep(G,P, V ) computes the Brauer quotient as a module for the quotient group NG(H)/H.

It was used to analyze the structure of the Brauer quotient and to obtain the boxed entries

in the tables of dimensions.

DirectSumRep(V1, V2) computes the direct sum V1 ⊕ V2 of the two representations V1 and V2.

Dual(V ) computes the dual module V ∗ = Homk(V, k) of V .

FixedPoints(V ) computes a basis for the the fixed points V G of V with respect to the group G.

In order to find the fixed points V H of a representation V with respect to a proper subgroup

H, you must use FixedPoints(RestrictedRep(G,H, V )).

FxdPtsForQuotient(V,G,H) computes the representation V H as a module for the quotient group

NG(H)/H. It may change the generators of NG(H)/H.
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GeneralProjectiveDecomposition(V ) computes a list L where L[1] = Vcore, L[2] = Vproj (or

rather, it computes bases for the corresponding submodules). The module Vproj is the largest

projective summand of V , and V = Vcore ⊕ Vproj .

GeneralTensorProduct(V1, V2) computes the tensor product V1 ⊗k V2 of the representations V1

and V2 as a representation of the product G1 ×G2, where each Vi is a kGi-module (i = 1, 2),

and (g1, g2)(u⊗ v) = g1u⊗ g2v.

InducedRep(G,H, V ) computes the induced module V ↑GH from H to G.

IsProjective(p, V ) tests whether the kG-module V is projective or not. It was used to determine

the boxed entries in the tables of dimensions of Brauer quotients.

IsRelativelyProjective(G,H, V ) tests whether the kG-module V is relatively H-projective. Al-

though it can also be used to determine if a kG-module is projective (by setting H equal to

{1}), this routine is considerably slower than IsProjective.

IsRepresentation(V ) tests whether V is truly a representation, that is, whether the assignment

obtained by sending V.group.generators to V.genimages gives a well-defined morphism of

groups.

ModularIrreducible(partition, q) returns the unique irreducible representation associated to the

given p-regular partition, where q is the cardinality of the field we are working with.

QuotientRep(V,L) computes the quotient representation of V over a submodule. The elements

of L are a k-basis for the submodule of V .

Rep(G,L) creates a representation V of G such that V.genimages= L.

RestrictedRep(G,H, V ) computes the restricted module V ↓GH from G to H.

Spin(V,L) computes a basis for the kG-submodule of V generated by the list of vectors L.

SubmoduleRep(V,L) computes the sub-representation of V generated by the list of vectors L.

symm(n) computes the symmetric group Sn. Its generators are the ordered list [(1,2),(1,2,...,n)],

which is an important convention needed to define representations of Sn.

TensorProduct(V1, V2) computes the tensor product V1 ⊗k V2 of V1 and V2 with the diagonal

action of G, that is, g(u⊗ v) = gu⊗ gv.

50



Bibliography

[1] J. L. Alperin. Local Representation Theory. Cambridge studies in advanced mathematics.

Cambridge University Press, Cambridge; New York, 1986.

[2] J. L. Alperin. Weights for finite groups. In The Arcata Conference on Representations of

Finite Groups, number 47 in Proceedings of symposia in pure mathematics, pages 369–379,

Providence, R.I., 1987. American Mathematical Society.

[3] J. L. Alperin and P. Fong. Weights for symmetric and general linear groups. Journal of Algebra,

131:2–22, 1990.

[4] M. Cabanes. Brauer morphism between modular Hecke algebras. Journal of Algebra, 115:1–3,

1988.

[5] Charles W. Curtis and Irving Reiner. Methods of representation theory–with Applications to

Finite Groups and Orders, volume I of Wiley classics library of pure and applied mathematics.

Wiley, New York, 1990.

[6] Martin Schönert et al. GAP – Groups, Algorithms and Programming. Lehrstuhl D für Mathe-

matik, Rheinisch Westfälische Technische Hocschule, Aachen, Germany, third edition, 1993.

[7] Gordon James. Trivial source modules for symmetric groups. Archiv der Mathematik, 41:294–

300, 1983.

[8] Gordon James and Andrew Mathas. Hecke algebras of type A with q = −1. Journal of Algebra,

184:102–158, 1996.

[9] Gordon Douglas James. The representation theory of the symmetric groups. Number 682 in

Lecture notes in mathematics. Springer-Verlag, Berlin; New York, 1978.

[10] Gordon Douglas James and Adalbert Kerber. The representation theory of the symmetric

group. Encyclopedia of mathematics and its applications; v. 16. Addison-Wesley Pub. Co.,

Reading, Mass., 1981.

[11] A. Kerber and A. Kohnert. SYMMETRICA 1.0. Lehrstul II für Mathematik, Department of

Mathematics, University of Bayreuth, 1993.

51
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